Skip to main content

A.I. detects skin cancer better than dermatologists in international study

Skin cancer detection won’t be turned over to machines anytime soon, but artificial intelligence detected skin cancer more accurately than a large group of international dermatologists in controlled testing, Agence France Presse reports.

In an academic study and clinical trial published in Annals of Oncology, the study’s lead author, Professor Holger A. Haenssle, of the University of Heidelberg Department of Dermatology, wrote, “Most dermatologists were outperformed by the CNN. Regardless of any physician’s level of experience, they may benefit from assistance by a CNN’s image classification.”

Recommended Videos

Man versus machine

The study pitted 58 dermatologists from 17 countries against a deep learning convolutional neural network (CNN).

Please enable Javascript to view this content

Prior to the test, researchers from Germany, France, and the U.S.  taught the CNN to differentiate benign skin lesions from dangerous melanomas. In the process, the team showed more than 100,000 images of correctly identified skin cancers to the neural network, which was designed with Google’s Inception v4 CNN architecture.

The 58 dermatologists were divided into three self-identified groups: beginners with less than two years of experience, skilled with two to five years, and experts with more than five years of experience. There were 19 beginners, 11 skilled, and 30 experts among the group.

Two tests were run. In one test the dermatologists were shown 100 dermoscopic images with no other information. They were asked to indicate whether the cancer was a melanoma or benign. In addition, the doctors were asked whether they would recommend excision, short-term follow-up, or no action. Four weeks later the dermatologists were shown the same images again, this time with additional clinical information about the patients plus close-up images.

The results

The CNN scored higher than the overall group of dermatologists on both tests, with and without extra information. The dermatologists accurately identified an average of 86.5 percent of the skin cancers on the image-only test. In the second test, with more information, the doctors averaged 88.9 percent accuracy.  The CNN, however, correctly detected the types of cancers 95 percent of the time based on images only.

Rated by experience group, none of the three groups of dermatologists was as accurate as the neural network. The team did report, however, that 18 of the dermatologists scored higher than the CNN.

“The CNN missed fewer melanomas, meaning it had a higher sensitivity than the dermatologists,” Haenssle said. It also “misdiagnosed fewer benign moles as malignant melanoma … this would result in less unnecessary surgery.”

According to the authors of the study, the test does not mean machines will replace doctors. One issue is that melanomas can be difficult to recognize or image in some parts of the body such as the toes and scalp. The study calls for repeated, large-sized clinical tests.

The test does show, however, that dermatologists at all skill levels could benefit from A.I. assistance in skin cancer classification.

Bruce Brown
Bruce Brown Contributing Editor   As a Contributing Editor to the Auto teams at Digital Trends and TheManual.com, Bruce…
Nvidia lowers the barrier to entry into A.I. with Fleet Command and LaunchPad
laptop running Nvidia Fleet Command software.

Nvidia is expanding its artificial intelligence (A.I.) offerings as part of its continued effort to "democratize A.I." The company announced two new programs today that can help businesses of any size to train and deploy A.I. models without investing in infrastructure. The first is A.I. LaunchPad, which gives enterprises access to a stack of A.I. infrastructure and software, and the second is Fleet Command, which helps businesses deploy and manage the A.I. models they've trained.

At Computex 2021, Nvidia announced the Base Command platform that allows businesses to train A.I. models on Nvidia's DGX SuperPod supercomputer.  Fleet Command builds on this platform by allowing users to simulate A.I. models and deploy them across edge devices remotely. With an Nvidia-certified system, admins can now control the entire life cycle of A.I. training and edge deployment without the upfront cost.

Read more
Can A.I. beat human engineers at designing microchips? Google thinks so
google artificial intelligence designs microchips photo 1494083306499 e22e4a457632

Could artificial intelligence be better at designing chips than human experts? A group of researchers from Google's Brain Team attempted to answer this question and came back with interesting findings. It turns out that a well-trained A.I. is capable of designing computer microchips -- and with great results. So great, in fact, that Google's next generation of A.I. computer systems will include microchips created with the help of this experiment.

Azalia Mirhoseini, one of the computer scientists of Google Research's Brain Team, explained the approach in an issue of Nature together with several colleagues. Artificial intelligence usually has an easy time beating a human mind when it comes to games such as chess. Some might say that A.I. can't think like a human, but in the case of microchips, this proved to be the key to finding some out-of-the-box solutions.

Read more
Read the eerily beautiful ‘synthetic scripture’ of an A.I. that thinks it’s God
ai religion bot gpt 2 art 4

Travis DeShazo is, to paraphrase Cake’s 2001 song “Comfort Eagle,” building a religion. He is building it bigger. He is increasing the parameters. And adding more data.

The results are fairly convincing, too, at least as far as synthetic scripture (his words) goes. “Not a god of the void or of chaos, but a god of wisdom,” reads one message, posted on the @gods_txt Twitter feed for GPT-2 Religion A.I. “This is the knowledge of divinity that I, the Supreme Being, impart to you. When a man learns this, he attains what the rest of mankind has not, and becomes a true god. Obedience to Me! Obey!”

Read more