Skip to main content

Scientists create a way to make more breathable 3D-printed tissues

The key to 3D printing bone and cartilage? Seaweed

Ozbolat Laboratory/Penn State

3D printing may be more commonly associated with things like rapid prototyping for industry and homemade “maker” projects, but it also opens up some exciting medical possibilities. Chief among these is the dream of 3D bioprinting, which could one day prove useful for everything from printing small-scale fabricated tissues to the eventual goal of fully functional transplant organs.

While the second of these ambitions is still a way off, researchers at Pennsylvania State University have made a big advance in the goal of creating lab-made tissues such as bone and cartilage. Specifically, they have developed a method of fabricating porous tissues, in which micro-pores allow nutrients and oxygen to circulate, thereby keeping the cells healthy.

Recommended Videos

The process involves taking human stem cells and mixing them with a sodium alginate material derived from seaweed. This can be printed into particles which, once dissolved, leaves tiny breathable pores. Combined into strands it is possible to create patches of tissue. The undifferentiated stem cells are used to convert the tissue into specific cells, such as bone or cartilage. The team who worked on the project are also looking at how this same technique could be used to create muscle, fat, and an assortment of other tissues.

Please enable Javascript to view this content

“These patches can be implanted in bone or cartilage, depending on which cells they are,” Ibrahim Ozbolat, associate professor of engineering science and mechanics at Penn State, said in a statement. “They can be used for osteoarthritis, patches for plastic surgery such as the cartilage in the nasal septum, knee restoration, and other bone or cartilage defects.”

But as promising as the work is, there is still more that needs to be done. That is because, as of now, it is only possible to make tiny patches of the material, thereby limiting its usefulness. However, these patches — while small — are reportedly considerably easier to fabricate than alternate methods, such as growing artificial tissue on scaffolding. If the researchers are able to develop the approach to make larger-scale printing possible, this latest innovation could turn out to be a considerable step forward in the field of 3D bioprinting.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
AMD Ryzen 7 5800X3D details leak, and there’s some bad news
AMD CEO presenting new CPU.

Several new leaks about upcoming AMD products have popped up, revealing the price and the release date of the AMD Ryzen 7 5800X3D, as well as additional information about the chip.

The bad news? Well, it may turn out to have a complete lack of overclocking features whatsoever.

Read more
AMD’s revolutionary 3D V-Cache chip could launch very soon
AMD Ryzen 5000G.

The launch of AMD's upcoming Ryzen 7 5800X3D processors is close, but a new leak tells us that it might be just a couple of weeks away.

According to a well-known source of hardware leaks, the processors have already started shipping. This indicates that they might hit the market by the end of this month. AMD estimates that its new processor could match up against the top chip from the Intel Alder Lake lineup.

Read more
AMD teases performance of its revolutionary 3D V-cache chip
AMD CEO holding 3D V-Cache CPU.

AMD is currently readying its new Ryzen 7 5800X3D, featuring a 3D V-cache, and it looks like we may soon have a powerful processor on our hands. AMD has teased that we can expect an up to 15% performance boost over the base Ryzen 7 5800X.

The tech giant talked about the new chip during the International Solid-State Circuits Conference (ISSSC) and revealed more information about its architecture. While the Ryzen 7 5800X3D will certainly be an improvement, will it be enough to compete with Intel's best processors?

Read more