Skip to main content

ANYmal dog robot can get back on its feet when someone pushes it over

Learning Agile and Dynamic Motor Skills for Legged Robots

Watching someone kick a robot dog is one of those weirdly unsettling things, despite the fact that we know that the canine in question is just a collection of servos and other high tech components. However, it’s an important reaction to test, since it’s the kind of unexpected collision that a robot might need to deal with if it’s going to function in the real world: especially if it will be working in unsafe environments or travelling on unstable surfaces.

Recommended Videos

Fortunately, researchers from the Swiss Federal Institute of Technology (ETH) Zurich in Switzerland are willing to do this job so you don’t have to. And the results are already looking promising. Roboticists at the research institution have demonstrated how their ANYmal four-legged robot is capable of taking a kicking and keeping on ticking — or, well, keeping on walking at least. More impressively, this ability to recover from potential knockout blows doesn’t require any additional hardware, but instead the implementation of a new algorithm. Oh, and it requires way less physical kicking to test than previous attempts.

“The main contribution of [our latest research paper] is to demonstrate that such complicated behaviors can be trained using only simulated data,” Jemin Hwangbo, the researcher who led the study, told Digital Trends. “Previously, simulation was not accurate enough to train performant control policies. Using the new simulation scheme, we made the simulation realistic and thus useful for training purposes. Training a control policy has many significant advantages over manual controller design approach. Training can be easily automated and require much less effort than its alternative. This translates to a cheaper and faster development of a robot. Another advantage is performance: trained control policies have more diverse behaviors, and thus make the robot more capable of reacting to environmental changes.”

As can be seen in the above video, the robot is able to readjust its gait when it’s given a shove or boot. Usefully, in the event that it is knocked over completely, it’s also capable of getting back to its feet. This would make it more useful in a real world environment, and would potentially mean less human supervision as it carries out its tasks.

“This means that many of the tasks can be performed more reliably,” Hwangbo continued. “The weakness of the existing robots in terms in practical situations is their reliability. In case of a fall, a human operator has to intervene. This deterred industries from using legged systems. Our contribution makes legged systems more practical.”

ANYmal was recently put through its paces when it was used to carry out inspections on one of the world’s largest offshore power-distribution platforms in the North Sea.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Range Rover’s first electric SUV has 48,000 pre-orders
Land Rover Range Rover Velar SVAutobiography Dynamic Edition

Range Rover, the brand made famous for its British-styled, luxury, all-terrain SUVs, is keen to show it means business about going electric.

And, according to the most recent investor presentation by parent company JLR, that’s all because Range Rover fans are showing the way. Not only was demand for Range Rover’s hybrid vehicles up 29% in the last six months, but customers are buying hybrids “as a stepping stone towards battery electric vehicles,” the company says.

Read more
BYD’s cheap EVs might remain out of Canada too
BYD Han

With Chinese-made electric vehicles facing stiff tariffs in both Europe and America, a stirring question for EV drivers has started to arise: Can the race to make EVs more affordable continue if the world leader is kept out of the race?

China’s BYD, recognized as a global leader in terms of affordability, had to backtrack on plans to reach the U.S. market after the Biden administration in May imposed 100% tariffs on EVs made in China.

Read more
Tesla posts exaggerate self-driving capacity, safety regulators say
Beta of Tesla's FSD in a car.

The National Highway Traffic Safety Administration (NHTSA) is concerned that Tesla’s use of social media and its website makes false promises about the automaker’s full-self driving (FSD) software.
The warning dates back from May, but was made public in an email to Tesla released on November 8.
The NHTSA opened an investigation in October into 2.4 million Tesla vehicles equipped with the FSD software, following three reported collisions and a fatal crash. The investigation centers on FSD’s ability to perform in “relatively common” reduced visibility conditions, such as sun glare, fog, and airborne dust.
In these instances, it appears that “the driver may not be aware that he or she is responsible” to make appropriate operational selections, or “fully understand” the nuances of the system, NHTSA said.
Meanwhile, “Tesla’s X (Twitter) account has reposted or endorsed postings that exhibit disengaged driver behavior,” Gregory Magno, the NHTSA’s vehicle defects chief investigator, wrote to Tesla in an email.
The postings, which included reposted YouTube videos, may encourage viewers to see FSD-supervised as a “Robotaxi” instead of a partially automated, driver-assist system that requires “persistent attention and intermittent intervention by the driver,” Magno said.
In one of a number of Tesla posts on X, the social media platform owned by Tesla CEO Elon Musk, a driver was seen using FSD to reach a hospital while undergoing a heart attack. In another post, a driver said he had used FSD for a 50-minute ride home. Meanwhile, third-party comments on the posts promoted the advantages of using FSD while under the influence of alcohol or when tired, NHTSA said.
Tesla’s official website also promotes conflicting messaging on the capabilities of the FSD software, the regulator said.
NHTSA has requested that Tesla revisit its communications to ensure its messaging remains consistent with FSD’s approved instructions, namely that the software provides only a driver assist/support system requiring drivers to remain vigilant and maintain constant readiness to intervene in driving.
Tesla last month unveiled the Cybercab, an autonomous-driving EV with no steering wheel or pedals. The vehicle has been promoted as a robotaxi, a self-driving vehicle operated as part of a ride-paying service, such as the one already offered by Alphabet-owned Waymo.
But Tesla’s self-driving technology has remained under the scrutiny of regulators. FSD relies on multiple onboard cameras to feed machine-learning models that, in turn, help the car make decisions based on what it sees.
Meanwhile, Waymo’s technology relies on premapped roads, sensors, cameras, radar, and lidar (a laser-light radar), which might be very costly, but has met the approval of safety regulators.

Read more