Skip to main content

Scientists want to blanket the Earth in sensors. Their secret weapon? Moths

Researchers want to study every square inch of planet Earth. But not every square inch of planet Earth is easy to study. Some areas are challenging for humans to get to in order to monitor. What’s the answer? According to investigators from the University of Washington, the solution is staring us right in the face: Why not use flying insects, such as moths, to place sensors in locations that would ordinarily be difficult to reach?

OK, “placing” sensors may not be entirely accurate. The idea, instead, is to use insects as a flying platform for carrying tiny, lightweight sensors, weighing less than one hundredth of an ounce. This insect-borne sensor can be strapped in place using a small magnetic pin, surrounded by a thin coil of wire. When the insect is in the right location, the researchers remotely trigger the coil to create a magnetic field by generating a current that runs through it. This causes the magnetic pin to pop out of place, and the sensor to safely plunge from a height of up to 72 feet without breaking. It’s the equivalent of a drone delivery or a military supply drop — but, you know, with really small living bugs.

University of Washington researchers have created a 98-milligram sensor system — about one tenth the weight of a jellybean — that can ride on the back of a moth. Shown here is a Manduca sexta moth with the sensor on its back. Mark Stone/University of Washington

“Dropping things from the air is a great way to get things into hard-to-reach places,” Vikram Iyer, a doctoral student in electrical and computer engineering at the University of Washington, told Digital Trends. “This is a strategy people use in disaster scenarios to deliver food and medical supplies, and is usually done with large planes or helicopters. That got us thinking, can we use this same idea with much smaller drones, or even live insects, to release sensors across a large area?”

Recommended Videos

For the most part, dropping a piece of high-tech equipment the equivalent of six floors is bad news. But by making their sensors weigh about the same as a toothpick, even without a parachute they’re light enough that they don’t get damaged in the fall. Iyer likened it to how an ant could survive a fall from the top of the Empire State Building.

Once on the ground, the sensors can then be used to record information such as temperature or humidity (and, in the future, maybe more).

Insects: The platform of the future

Perhaps surprisingly, the University of Washington isn’t the only place interested in repurposing bugs for high-tech uses. Far from it, in fact. The Defense Advanced Research Projects Agency (DARPA) has flown rhinoceros beetles around like miniature RC helicopters. Other research labs have expanded on the notion of remote-controlling insects to create cyborg beetles. They control the signals transmitted to them so that the creatures speed up, slow down, take longer or shorter strides, and even change up their gait according to commands.

Then there are backpack-wearing, bomb-sniffing cyborg grasshoppers developed at Washington University in Missouri, previously described to Digital Trends as a “bridge between neuroscience and engineering.” That work has most recently received funding from the Office of Naval Research.

Mark Stone/University of Washington

It’s hard not to think that spy sensor-dropping armies of moths could have potential military applications. It’s difficult to imagine a more stealthy delivery platform for deploying surveillance sensors than a few harmless moths quietly fluttering through the sky. At present, though, it sounds like the applications are a bit more rooted in fundamental research.

While it’s early days for the project, the brilliance of the central idea is that it could be customized according to requirements — and the development of the necessary sensing technology to record whatever information you’re looking for.

How will it be used?

The researchers on the project believe that, using their unusual technique, it would be possible to effectively carpet bomb large areas with tiny sensors for monitoring data such as the conditions in a large area of forest. The sensing devices can transmit data at ranges up to 1 kilometer (0.6 miles), and consumes so little power that it has the potential to run for years on a single battery.

Dropping Sensors From Live Moths

“Environmental research like maybe detecting the spread of forest fires or monitoring emissions over a large area are potential applications,” Maruchi Kim, another doctoral student who worked on the project, told Digital Trends. “Smart farms could also benefit from being able to quickly deploy things over a large area, as well as in spaces like industrial plants where you might have hard-to-reach places where you need to put a sensor. Another potential area is studying small animals or invasive species; you could attach this to something like a small bird or insect and use the onboard temperature sensor to release it when it gets to a nest, likely indicated by a temperature spike.”

Kim said the researchers are currently working with the Washington State Department of Agriculture to help track the invasive Asian giant hornet. “At the moment, we’re just using the wireless sensor part with the goal of following a live hornet back to a colony,” he said. “But in the future, we could add the release mechanism and drop the device once it reaches a nest.”

A paper describing the work, titled “Airdropping sensor networks from drones and insects,” was recently presented at the MobiCom 2020 conference.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Range Rover’s first electric SUV has 48,000 pre-orders
Land Rover Range Rover Velar SVAutobiography Dynamic Edition

Range Rover, the brand made famous for its British-styled, luxury, all-terrain SUVs, is keen to show it means business about going electric.

And, according to the most recent investor presentation by parent company JLR, that’s all because Range Rover fans are showing the way. Not only was demand for Range Rover’s hybrid vehicles up 29% in the last six months, but customers are buying hybrids “as a stepping stone towards battery electric vehicles,” the company says.

Read more
BYD’s cheap EVs might remain out of Canada too
BYD Han

With Chinese-made electric vehicles facing stiff tariffs in both Europe and America, a stirring question for EV drivers has started to arise: Can the race to make EVs more affordable continue if the world leader is kept out of the race?

China’s BYD, recognized as a global leader in terms of affordability, had to backtrack on plans to reach the U.S. market after the Biden administration in May imposed 100% tariffs on EVs made in China.

Read more
Tesla posts exaggerate self-driving capacity, safety regulators say
Beta of Tesla's FSD in a car.

The National Highway Traffic Safety Administration (NHTSA) is concerned that Tesla’s use of social media and its website makes false promises about the automaker’s full-self driving (FSD) software.
The warning dates back from May, but was made public in an email to Tesla released on November 8.
The NHTSA opened an investigation in October into 2.4 million Tesla vehicles equipped with the FSD software, following three reported collisions and a fatal crash. The investigation centers on FSD’s ability to perform in “relatively common” reduced visibility conditions, such as sun glare, fog, and airborne dust.
In these instances, it appears that “the driver may not be aware that he or she is responsible” to make appropriate operational selections, or “fully understand” the nuances of the system, NHTSA said.
Meanwhile, “Tesla’s X (Twitter) account has reposted or endorsed postings that exhibit disengaged driver behavior,” Gregory Magno, the NHTSA’s vehicle defects chief investigator, wrote to Tesla in an email.
The postings, which included reposted YouTube videos, may encourage viewers to see FSD-supervised as a “Robotaxi” instead of a partially automated, driver-assist system that requires “persistent attention and intermittent intervention by the driver,” Magno said.
In one of a number of Tesla posts on X, the social media platform owned by Tesla CEO Elon Musk, a driver was seen using FSD to reach a hospital while undergoing a heart attack. In another post, a driver said he had used FSD for a 50-minute ride home. Meanwhile, third-party comments on the posts promoted the advantages of using FSD while under the influence of alcohol or when tired, NHTSA said.
Tesla’s official website also promotes conflicting messaging on the capabilities of the FSD software, the regulator said.
NHTSA has requested that Tesla revisit its communications to ensure its messaging remains consistent with FSD’s approved instructions, namely that the software provides only a driver assist/support system requiring drivers to remain vigilant and maintain constant readiness to intervene in driving.
Tesla last month unveiled the Cybercab, an autonomous-driving EV with no steering wheel or pedals. The vehicle has been promoted as a robotaxi, a self-driving vehicle operated as part of a ride-paying service, such as the one already offered by Alphabet-owned Waymo.
But Tesla’s self-driving technology has remained under the scrutiny of regulators. FSD relies on multiple onboard cameras to feed machine-learning models that, in turn, help the car make decisions based on what it sees.
Meanwhile, Waymo’s technology relies on premapped roads, sensors, cameras, radar, and lidar (a laser-light radar), which might be very costly, but has met the approval of safety regulators.

Read more