Skip to main content

NASA is testing out a new laser communications system this summer

Illustration of the U.S. Department of Defense's Space Test Program Satellite-6 (STPSat-6) with the Laser Communications Relay Demonstration (LCRD) payload communicating data over infrared links.
Illustration of the U.S. Department of Defense’s Space Test Program Satellite-6 (STPSat-6) with the Laser Communications Relay Demonstration (LCRD) payload communicating data over infrared links. NASA

As the instruments we send into space get increasingly complex and are able to collect larger amounts of data, we need a more efficient way to send that data back to Earth. The current space communication system uses radio-based communications, with agencies like NASA gradually moving to higher and higher frequencies to squeeze more data into a transmission. But for the next generation of space instrument, we’ll need a communication system that can handle even more data, and that’s where lasers come in.

Laser communications, also known as optical communications, allows instruments to send larger amounts of data like 4K videos or months of scientific analysis back to Earth. It could increase the amount of data that can be be sent by between 10 and 100 times compared to current systems. To illustrate what that means, NASA explains: “It would take roughly nine weeks to transmit a complete map of Mars back to Earth with current radio frequency systems. With lasers, it would take about nine days.”

Recommended Videos

NASA recently announced it will be launching a demonstration of this laser communications technology later this summer, in a mission called the Laser Communications Relay Demonstration (LCRD).

“LCRD will demonstrate all of the advantages of using laser systems and allow us to learn how to use them best operationally,” said Principal Investigator David Israel at NASA’s Goddard Space Flight Center in a statement “With this capability further proven, we can start to implement laser communications on more missions, making it a standardized way to send and receive data.”

To test out laser communications, LCRD will be launched into geosynchronous orbit around 22,000 miles above the planet in June. For the first two years of its mission, it will test out communications with various experiments involving sending data back and forth between the ground station in California and Hawaii. As laser communications can be blocked by clouds, NASA needs to figure out what the effects of various kinds of atmospheric disturbance will be on the communications system. After these two years are up, LCRD will start sending and receiving information to and from current space missions.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Intuitive Machines to carry NASA experiments to the moon in 2027
An artist’s concept of Intuitive Machines’ Nova-C lunar lander on the Moon’s South Pole.

Intuitive Machines, the company that earlier this year managed the first lunar landing by a commercial entity (partly successfully) will be returning to the moon with more NASA payloads. As part of NASA's CLPS (Commercial Lunar Payload Services) program, Intuitive Machines will design and build a lander to launch to the moon's south pole, and NASA will pay $117 million for it to carry six science payloads.

This is part of NASA's broader effort to embrace the burgeoning private space industry by becoming a customer of space companies rather than designing and building its own spacecraft. The aim is for Intuitive Machines to arrive at the moon's south pole in 2027, ahead of the Artemis missions that will see humans return to the lunar surface. The company will also be launching another lunar lander called Athena later this year, with a third launch planned next year as well.

Read more
NASA reveals date for attempted return flight of troubled Starliner
Boeing's Starliner spacecraft docked at the space station.

NASA is targeting Friday, September 6, for the return flight of Boeing Space’s troubled Starliner spacecraft, the agency revealed on Thursday.

The vehicle will come home from the International Space Station (ISS) nearly three months later than originally planned and without the crew that it arrived with. The flight, the outcome of which could determine the Starliner’s future, is expected to take about six hours, NASA said in a blog post on Thursday.

Read more
Another piece of NASA’s mega moon rocket ships out
Crews moved the cone-shaped launch vehicle stage adapter out of NASA Marshall’s Building 4708 to the agency’s Pegasus barge on August 21. The barge will ferry the adapter first to NASA’s Michoud Assembly Facility, where it will pick up additional SLS hardware for future Artemis missions, and then travel to NASA Kennedy. In Florida, teams with NASA’s Exploration Ground Systems will prepare the adapter for stacking and launch.

Even while NASA is struggling with Boeing's new crewed Starliner spacecraft, it is continuing work on another key piece of space infrastructure: its Space Launch System, or SLS rocket that is designed to carry astronauts to the moon and beyond. Parts of the new rocket are arriving at the Kennedy Space Center in Florida, and now another key piece is on its ways: the launch vehicle stage adapter.

Standing at 322 feet tall when fully stacked, the SLS is NASA's most powerful rocket to date and has already been on a test flight around the moon as part of the Artemis I mission in 2022. Now, NASA is preparing for its first crewed flight using the rocket, which will be the Artemis II mission scheduled for September 2025. Unlike NASA's current woes with the Starliner spacecraft, which ferries astronauts between Earth and the International Space Station, the Artemis II mission will use a different spacecraft called the Orion.

Read more