Skip to main content

How this supercomputer will use A.I. to map the universe’s dark energy

The Perlmutter supercomputer at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory
The Perlmutter supercomputer at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory Berkeley Lab

To hunt for one of the most mysterious forces in the universe, you need a powerful computer. Soon the hunt for dark energy will get a boost from a next-generation supercomputer, which will help in a project to create the most detailed 3D map yet of the universe.

The Wall Street Journal reports that the new Perlmutter supercomputer, recently installed at the National Energy Research Scientific Computing Center in Berkeley, California, will begin working on the Dark Energy Spectroscopic Instrument (DESI) survey project this summer. The project aims to learn more about dark energy, a hypothesized type of energy that accounts for a whopping 68% of the universe. To do this, the DESI instrument at the Kitt Peak National Observatory in Arizona will observe the night sky with 5,000 spectroscopic “eyes” which will record the light from 35 million galaxies.

Recommended Videos

To analyze all of that data, researchers will use the Perlmutter supercomputer. Named after Nobel Prize-winning astrophysicist Saul Perlmutter, the computer is a significant upgrade over the lab’s previous supercomputer, Cori, and is predicted to reach 100 petaFLOPS of processing power.

Perlmutter will use artificial intelligence to identify significant objects in the DESI data, then other applications can calculate the distance between these objects. By observing how gravity operates on a very large scale, researchers can pick up clues about the expansion of the universe, and from this, learn about dark energy.

That’s because dark energy is something we know exists due to the way the universe expands. Scientists have known for a long time that the universe is expanding, but research using the Hubble Space Telescope in the 1990s showed that the rate of this expansion was not slowing down, as would be expected due to gravity, but was actually accelerating. That’s the puzzle: There’s some unknown force pushing galaxies outward, and that force is what we call dark energy. To understand it more, we need to track distant objects like galaxies or quasars and map their distance.

To this end, the DESI project aims to produce a 3D map of the sky, far more detailed than any other 3D map made to date. “That allows us to look further back into the history of the universe and to a time period that’s never been probed [at high precision] for dark energy studies,” Aaron Meisner, a staff scientist at the National Science Foundation’s NOIRLab, told the WSJ.

DESI is expected to begin its five-year survey later this year.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Researchers want to use gravitational waves to learn about dark matter
Artist's conception shows two merging black holes similar to those detected by LIGO.

When two sufficiently massive objects collide -- such as when two black holes merge -- the forces can actually bend space-time, creating ripples called gravitational waves. These gravitational waves can be detected even from millions of light-years away, making them a way to learn about distant, dramatic events in far-off parts of the universe. And now, a team of astronomers has come up with a method for using gravitational waves to study the mysterious phenomenon of dark matter.

The idea of the research was to create different computer models of what gravitational waves from black hole mergers would look like in universes with different types of dark matter. By comparing the models to what is seen in the real world, we can learn more about what type of dark matter is most likely.

Read more
Euclid mission launches to probe the mysteries of dark matter
This artist’s concept shows the ESA (European Space Agency) Euclid mission in space.

The European Space Agency (ESA) has successfully launched its Euclid space telescope to study the mysteries of dark matter and dark energy. The spacecraft launched from Cape Canaveral in Florida using a SpaceX Falcon 9 rocket, with liftoff at 11:12 a.m. ET (8:12 a.m. PT).

This artist’s concept shows the ESA (European Space Agency) Euclid mission in space. ESA, CC BY-SA 3.0 IGO

Read more
How to watch the Euclid dark matter telescope launch this Saturday
This artist impression shows Euclid leaving Earth and on its way to Sun-Earth Lagrange point L2. This equilibrium point of the Sun-Earth system is located 1.5 million kilometres from Earth in the opposite direction of the Sun. L2 revolves around the Sun along with Earth. During Euclid’s orbit at L2, Euclid’s sunshield always blocks the light from the Sun, Earth and Moon while pointing its telescope towards deep space, ensuring a high level of stability for its instruments.

The astronomy community is about to get a new instrument to probe the mysteries of dark matter, with the launch of the European Space Agency (ESA)'s Euclid telescope this Saturday. Euclid is a highly sophisticated space-based telescope that will observe huge swaths of the sky to create a 3D model of the universe to help elucidate some of the biggest questions in cosmology.

Euclid | Journey to darkness

Read more