Skip to main content

This tiny exoplanet 35 light-years away is half the mass of Venus

The L 98-59b planet.
This artist’s impression shows L 98-59b, one of the planets in the L 98-59 system that’s 35 light-years away. The system contains four confirmed rocky planets with a potential fifth, the farthest from the star, unconfirmed. ESO/M. Kornmesser

Of the roughly 4,200 planets outside our solar system discovered thus far, most are larger than Earth for the simple reason that it’s easier to spot a larger planet as it has a more noticeable impact on the environment around it. That’s why it’s notable when smaller exoplanets are discovered, like the recently identified planet L 98-59b, which is just half the mass of Venus.

The planet, orbiting the star L 98-59, which is just 35 light-years away, is part of a system of four or possibly five planets that are comparable to the rocky planets in the inner part of our solar system. The diminutive planet is the closest of the system to its star and is the smallest ever discovered using a method called radial velocity. This works by detecting a tiny wobble in the host star, which is caused by the gravity of the planet as it orbits, and this detection was made using the European Southern Observatory’s Very Large Telescope (VLT), which is located in the Atacama desert in Chile.

Recommended Videos

The other planets in this system are intriguing as well. One of them may even be habitable, as it is in the habitable zone (the distance from a star at which liquid water could exist on a planet’s surface), and it is a rocky planet like Earth or Venus.

Please enable Javascript to view this content

“The planet in the habitable zone may have an atmosphere that could protect and support life,” said one of the authors, María Rosa Zapatero Osorio of the Centre for Astrobiology in Madrid, Spain, in a statement.

This makes the system a great target for further investigations with new and upcoming tools, like the James Webb Space Telescope, which will be able to detect whether exoplanets have atmospheres.

“This system announces what is to come,” said lead author Olivier Demangeon of the University of Porto. “We, as a society, have been chasing terrestrial planets since the birth of astronomy, and now we are finally getting closer and closer to the detection of a terrestrial planet in the habitable zone of its star, of which we could study the atmosphere.”

The findings are published in the journal Astronomy & Astrophysics.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
How astronomers used James Webb to detect methane in the atmosphere of an exoplanet
An artists rendering of a blue and white exoplanet known as WASP-80 b, set on a star-studded black background. Alternating horizontal layers of cloudy white, grey and blue cover the planets surface. To the right of the planet, a rendering of the chemical methane is depicted with four hydrogen atoms bonded to a central carbon atom, representing methane within the exoplanet's atmosphere. An artist’s rendering of the warm exoplanet WASP-80 b whose color may appear bluish to human eyes due to the lack of high-altitude clouds and the presence of atmospheric methane identified by NASA’s James Webb Space Telescope, similar to the planets Uranus and Neptune in our own solar system.

One of the amazing abilities of the James Webb Space Telescope is not just detecting the presence of far-off planets, but also being able to peer into their atmospheres to see what they are composed of. With previous telescopes, this was extremely difficult to do because they lacked the powerful instruments needed for this kind of analysis, but scientists using Webb recently announced they had made a rare detection of methane in an exoplanet atmosphere.

Scientists studied the planet WASP-80 b using Webb's NIRCam instrument, which is best known as a camera but also has a slitless spectroscopy mode which allows it to split incoming light into different wavelengths. By looking at which wavelengths are missing because they have been absorbed by the target, researchers can tell what an object -- in this case, a planetary atmosphere -- is composed of.

Read more
James Webb investigates a super puffy exoplanet where it rains sand
Artistic concept of the exoplanet WASP-107b and its parent star. Even though the rather cool host star emits a relatively small fraction of high-energy photons, they can reach deep into the planet’s fluffy atmosphere.

Exoplanets come in many forms, from dense, rocky planets like Earth and Mars to gas giants like Jupiter and Saturn. But some planets discovered outside our solar system are even less dense than gas giants and are a type known informally as super-puff or cotton candy planets. One of the least dense exoplanets known, WASP-107b, was recently investigated using the James Webb Space Telescope (JWST) and the planet's weather seems to be as strange as its puffiness.

The planet is more atmosphere than core, with a fluffy atmosphere in which Webb spotted water vapor and sulfur dioxide. Strangest of all, Webb also saw silicate sand clouds, suggesting that it would rain sand between the upper and lower layers of the atmosphere. The planet is almost as big as Jupiter but has a tiny mass similar to that of Neptune.

Read more
Hubble spots an Earth-sized exoplanet just 22 light-years away
An artist’s concept of the nearby exoplanet, LTT 1445Ac, which is the size of Earth. The planet orbits a red dwarf star.

Although astronomers have now discovered more than 5,000 exoplanets, or planets outside of the solar system, the large majority of these planets are considerably larger than Earth. That's partly because it's easier to spot larger planets from tremendous distances across space. So it's exciting when an Earth-sized planet is discovered -- and the Hubble Space Telescope has recently confirmed that a nearby planet, which is diminutive by exoplanet standards, is 1.07 times the size of Earth.

The planet LTT 1445Ac was first discovered by NASA's Transiting Exoplanet Survey Satellite (TESS) in 2022, but it was hard to determine its exact size due to the plane of its orbit around its star as seen from Earth. “There was a chance that this system has an unlucky geometry and if that’s the case, we wouldn’t measure the right size. But with Hubble’s capabilities we nailed its diameter,” said lead researcher Emily Pass of the Harvard-Smithsonian Center for Astrophysics in a statement.

Read more