Skip to main content

Research confirms enormous mass of supermassive black hole at center of galaxy

A new study reveals the most precise information yet about the mass of the enormous black hole at the center of our galaxy. Like most galaxies, the Milky Way has a supermassive black hole at its heart, and the recent research shows more about the mass of this monster called Sagittarius A*or Sgr A* for short.

Illustration of the black hole Sagittarius A* at the center of the Milky Way.
Illustration of the black hole Sagittarius A* at the center of the Milky Way. International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/(Spaceengine) Acknowledgement: M. Zamani (NSF's NOIRLab)

The researchers used instruments including the European Southern Observatory’s Very Large Telescope to measure the movements of stars near to the black hole to see how much of the mass at the center of the galaxy is due to stars, smaller black holes, and other matter, and how much is due to the black hole itself.

Recommended Videos

“With the 2020 Nobel prize in physics awarded for the confirmation that Sgr A* is indeed a black hole, we now want to go further. We would like to understand whether there is anything else hidden at the center of the Milky Way and whether general relativity is indeed the correct theory of gravity in this extreme laboratory,” explained Stefan Gillessen, one of the astronomers involved in this work, in a statement. “The most straightforward way to answer that question is to closely follow the orbits of stars passing close to Sgr A*.”

The researchers found that the large majority of this mass, around 99.9% of it, was due to the black hole. We can now be confident that Sagittarius A*’s mass is around 4.3 million times the mass of the sun.

In this illustration, stars are seen to be in close orbit around the supermassive black hole that lurks at the center of the Milky Way, known as Sagittarius A* (Sgr A*).
In this illustration, stars are seen to be in close orbit around the supermassive black hole that lurks at the center of the Milky Way, known as Sagittarius A* (Sgr A*). International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/(Spaceengine) Acknowledgement: M. Zamani (NSF's NOIRLab)

To make these measurements, an international team cooperated on the project to bring together data from different instruments around the world. The researchers say that future telescopes like the Giant Magellan Telescope and the Thirty Meter Telescope will make it possible to make even more precise measurements.

“We will improve our sensitivity even further in future, allowing us to track even fainter objects,” concluded Gillessen. “We hope to detect more than we see now, giving us a unique and unambiguous way to measure the rotation of the black hole.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
This peculiar galaxy has two supermassive black holes at its heart
The billion-year-old aftermath of a double spiral galaxy collision, at the heart of which is a pair of supermassive black holes.

As hard as it is to picture, with billions or even trillions of galaxies in the universe, entire galaxies can collide with each other. When that happens, one galaxy can be destroyed or the two can merge into one. But even in the case of galaxy mergers, the effects of the collision are often visible for billions of years afterward.

That's shown in a recent image taken by the Gemini South observatory, which shows the chaotic result of a merger between two spiral galaxies 1 billion years ago.

Read more
Swift Observatory spots a black hole snacking on a nearby star
Swift J0230 occurred over 500 million light-years away in a galaxy named 2MASX J02301709+2836050, captured here by the Pan-STARRS telescope in Hawaii.

Black holes can be hungry beasts, devouring anything that comes to close to them, including clouds of gas, rogue planets, and even stars. When stars get too close to a black hole, they can be pulled apart by gravity in a process called tidal disruption that breaks up the star into streams of gas. But a recent discovery shows a different phenomenon: a black hole that is "snacking" on a star. It's not totally destroying the star, but pulling off material and nibbling at it on a regular basis.

Black Hole Snack Attack

Read more
Researchers want to use gravitational waves to learn about dark matter
Artist's conception shows two merging black holes similar to those detected by LIGO.

When two sufficiently massive objects collide -- such as when two black holes merge -- the forces can actually bend space-time, creating ripples called gravitational waves. These gravitational waves can be detected even from millions of light-years away, making them a way to learn about distant, dramatic events in far-off parts of the universe. And now, a team of astronomers has come up with a method for using gravitational waves to study the mysterious phenomenon of dark matter.

The idea of the research was to create different computer models of what gravitational waves from black hole mergers would look like in universes with different types of dark matter. By comparing the models to what is seen in the real world, we can learn more about what type of dark matter is most likely.

Read more