Skip to main content

Here are the cosmic targets for James Webb’s Telescope’s first images

This week will see the exciting release of the first science images from the James Webb Space Telescope. The telescope, a combined project from NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA), was launched in December last year and since then has arrived at its orbit around the sun, deployed its hardware, and aligned its mirrors and instruments. Now, NASA is gearing up for the release of the first images from the telescope, set for July 12, and has announced which objects the images will show.

The first object is the Carina Nebula, a large cloud of dust and gas where an enormous star exploded in 1843. The nebula is famed for its beauty as well as for hosting star WR 25, the brightest star in our galaxy. It is large by nebulae standards and is located 7,600 light-years away in the constellation Carina, visible in the southern hemisphere.

Eta Carinae as imaged by the Hubble Space Telescope’s Wide Field Camera 3 instrument in ultraviolet. The James Webb Space Telescope will image the same nebula in the infrared. NASA, ESA, N. Smith (University of Arizona, Tucson), and J. Morse (BoldlyGo Institute, New York)

The second object is a giant exoplanet called WASP-96b. Located 1,150 light-years away, it is around half the mass of Jupiter and it orbits very close to its star, with a year there lasting just 3.4 days. The data on this planet will include a spectrum, which can be used to tell what an object is composed of. It will likely include data about the exoplanet’s atmosphere, which is one of Webb’s new capabilities.

Recommended Videos

The third object is another nebula, the Southern Ring Nebula, which is bright and a distinctive round shape, made up of gas around a star coming to the end of its life.

The fourth and fifth objects are on a larger scale, including a galaxy group called Stephan’s Quintet located 290 million light-years away which has four of its five galaxies in very close proximity, and a deep field image called SMACS 0723 in which gravitational lensing gives a deep view of extremely distant and faint galaxies.

These images are just a taster of the work that James Webb will do in its first year, and show the variety of types of objects that it can study. The images are scheduled to be released on Tuesday, July 12, beginning at 10:30 a.m. ET (7:30 a.m. PT), and you can watch the release via a live broadcast on NASA TV.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Crew Dragon is about to fly with empty seats for the first time. Here’s why
A Falcon 9 rocket launches from California.

NASA and SpaceX are making final preparations for the Crew-9 astronaut flight to the International Space Station (ISS), which is set to launch from the Kennedy Space Center in Florida on Thursday, September 26.

But this will be the first of SpaceX’s 13 crewed flights to the ISS since the first one in 2020 where there will be two empty seats on the Crew Dragon spacecraft. And there’s a very good reason for that. Let us explain.

Read more
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more