Skip to main content

See the universe in stunning detail in first James Webb image

After years of planning and months in space, the James Webb Space Telescope has inaugurated a new era in astronomy. NASA today released the first science image from the world’s most powerful space telescope, showing the infrared universe in a depth never seen before.

“From the beginning of history, humans have looked up to the night sky with wonder,” Vice President Kamala Harris said in a briefing. “Now, we enter a new phase of scientific discovery. Building on the legacy of Hubble, the James Webb Space Telescope allows us to see deeper into space than ever before and in stunning clarity.” Harris also acknowledged the contributions of international partners in the building of Webb, which included NASA, the European Space Agency, and the Canadian Space Agency: “This telescope is one of humanity’s great engineering achievements,” she said.

Known as Webb’s First Deep Field, this image of galaxy cluster SMACS 0723 is overflowing with detail.
This first image from NASA’s James Webb Space Telescope is the deepest and sharpest infrared image of the distant universe to date. Known as Webb’s First Deep Field, this image of galaxy cluster SMACS 0723 is overflowing with detail. Thousands of galaxies – including the faintest objects ever observed in the infrared – have appeared in Webb’s view for the first time. This slice of the vast universe covers a patch of sky approximately the size of a grain of sand held at arm’s length by someone on the ground. NASA, ESA, CSA, and STScI

The image shows galaxy cluster SMACS 0723 and is the deepest infrared image of the distant universe to date. It shows the cluster as it would have been 4.6 billion years ago, and because the mass of the cluster is so great it bends spacetime and allows us to see even more distant galaxies behind it. As they are so distant the light is very faint, and these thousands of galaxies are among the faintest objects ever observed in infrared — captured thanks to Webb’s NIRCam instrument in a composite of observations taken over 12.5 hours to pick up this level of detail.

Recommended Videos

Unlike telescopes like Hubble which look primarily in the visible light range, equivalent to what would be seen by the human eye, Webb’s instruments operate in the infrared. This enables the telescope to look through opaque targets like clouds of dust to see what lies beneath, and it will be used to study nebulae, stars, black holes, and more.

Webb’s instruments are so sensitive that they can observe extremely distant targets, which — because of the time it takes for light to travel from these great distances to Earth — is like looking back in time. Webb will search out some of the earliest galaxies in the universe, helping to elucidate a period called the Epoch of Reionization when the earliest stars spread light through the universe for the first time.

Deep field images like the one shown above help in the quest to find the earliest galaxies by identifying extremely distant galaxies in dim patches of the sky. Similar images will be produced by deep and wide surveys made using Webb, such as the upcoming COSMOS-Webb program.

The image released today is just a teaser of all that is to come from Webb. More images will be released tomorrow, including images of nebulae and a galaxy group, as well as a spectrum showing the composition of the atmosphere of an exoplanet. And there will be plenty more topics that Webb will study in its first year as well, giving astronomers glimpses into topics as wide-ranging as how stars are formed, the composition of comets in our solar system, and how the first black holes formed.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb image shows two galaxies in the process of colliding
This composite image of Arp 107, created with data from the James Webb Space Telescope’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument), reveals a wealth of information about the star formation taking place in these two galaxies and how they collided hundreds of million years ago. The near-infrared data, shown in white, show older stars, which shine brightly in both galaxies, as well as the tenuous gas bridge that runs between them. The vibrant background galaxies are also brightly illuminated at these wavelengths.

A new image from the James Webb Space Telescope shows one of the universe's most dramatic events: the colliding of two galaxies. The pair, known as Arp 107, are located located 465 million light-years away and have been pulled into strange shapes by the gravitational forces of the interaction, but this isn't a purely destructive process. The collision is also creating new stars as young stars are born in swirling clouds of dust and gas.

The image above is a composite, bringing together data from Webb's NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). These two instruments operate in different parts of the infrared, so they can pick up on different processes. The data collected in the near-infrared range is seen in white, highlighting older stars and the band of gas running between the two galaxies. The mid-infrared data is shown in orange and red, highlighting busy regions of star formation, with bright young stars putting out large amounts of radiation.

Read more
See the first images from Europe’s Sentinel-2C satellite looking down on Earth
Seville from Copernicus Sentinel-2C

Earlier this month, the European Space Agency (ESA) launched its newest Earth-observation satellite, known as Copernicus Sentinel-2C. Joining its siblings Sentinel-2A and B, it will take high-resolution images of the planet's surface from its altitude of almost 500 miles, capturing some stunning views of lesser-seen parts of our world.

Now, the first images taken by Sentinel-2C have been released, including views over European cities, a stretch of the French coast, and the effects of the wildfires raging through California. "These initial images stand as a powerful testament to the success of this extraordinary mission," said Simonetta Cheli, ESA’s director of Earth Observation Programmes, in a statement. "While Sentinel-2 will continue to serve Copernicus with distinction for years to come, we are already looking ahead as we develop the next chapter with the Sentinel-2 Next Generation mission."

Read more
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more