Skip to main content

Inside giant ice planets, it could be raining diamonds

The universe is stranger than you can imagine, and out in the depths of space, there are wild and weird exoplanets to be found — planets with glowing rivers of lava, or planets under gravitational forces so strong they are shaped like a football. We can add to this list another class of strange planet, ones on which it rains diamonds.

The diamond rain effect is thought to occur deep within ice giants like Uranus and Neptune, and it was re-created in a lab here on Earth in 2017. Now, researchers have found that this effect isn’t just a rare fluke but could be more common than previously thought.

Diamond rain could occur on ice giant planets in the presence of oxygen.
Diamond rain can occur deep within ice giant planets and is more common in the presence of oxygen. Greg Stewart/SLAC National Accelerator Laboratory

The international group of researchers working with the SLAC National Accelerator Laboratory previously created the diamond rain effect by placing hydrogen and carbon under extremely high pressures. But in this new research, they wanted to make the conditions more realistic to what the interior of an ice giant planet would be like by also including other elements that would be present, such as oxygen.

To simulate this mix of chemicals, the researchers used a familiar material — PET plastic, like that used in good packaging, which turns out to be chemically similar to the conditions they wanted to create. “PET has a good balance between carbon, hydrogen, and oxygen to simulate the activity in ice planets,” explained one of the researchers, Dominik Kraus of the University of Rostock.

The researchers used a high-powered laser to create shock waves in the plastic, then observed how X-rays bounced off it. This let them see how small diamonds were forming. The diamonds produced in the experiment were very small, called nanodiamonds, but at around 5,000 miles beneath the surface of an ice giant much larger diamonds could form, where they would fall toward the planet’s icy core. The diamonds could even sink into the core and form a thick diamond layer.

In the new experiments, the team found that when they included oxygen then the nanodiamonds grew at lower temperatures and pressures, which means that having oxygen present makes the formation of diamond rain more likely. “The effect of the oxygen was to accelerate the splitting of the carbon and hydrogen and thus encourage the formation of nanodiamonds,” Kraus said. “It meant the carbon atoms could combine more easily and form diamonds.”

With this discovery, the researchers now want to try the experiments again and include chemicals like ethanol, water, and ammonia to even more closely model the environments of ice giants.

“The fact that we can recreate these extreme conditions to see how these processes play out on very fast, very small scales is exciting,” said SLAC scientist and collaborator Nicholas Hartley. “Adding oxygen brings us closer than ever to seeing the full picture of these planetary processes, but there’s still more work to be done. It’s a step on the road towards getting the most realistic mixture and seeing how these materials truly behave on other planets.”

The research is published in the journal Science Advances.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronomers discover rare ‘exo-Venus’ just 40 light-years away
Gliese 12 b, which orbits a cool, red dwarf star located just 40 light-years away, promises to tell astronomers more about how planets close to their stars retain or lose their atmospheres. In this artist’s concept, Gliese 12 b is shown retaining a thin atmosphere.

Gliese 12 b, which orbits a cool, red dwarf star located just 40 light-years away, promises to tell astronomers more about how planets close to their stars retain or lose their atmospheres. In this artist’s concept, Gliese 12 b is shown retaining a thin atmosphere. NASA/JPL-Caltech/R. Hurt (Caltech-IPAC)

Astronomers have discovered a rare type of planet called an "exo-Venus," which is between the size of Earth and Venus and is located just 40 light-years away -- practically in our back yard. Although scientists think that planets of this size could be very common in our galaxy, they are hard to identify because they are so much smaller than the big gas giants that are more commonly discovered. This new planet also seems to have similar temperatures to Earth, and studying it could help to explain how atmospheres develop and how Earth became habitable.

Read more
Extreme solar storms create gorgeous views of auroras across the planet
NASA’s Solar Dynamics Observatory captured this image of a solar flare – as seen in the bright flash toward the middle of the image – on May 10, 2024. The image shows a subset of extreme ultraviolet light that highlights the extremely hot material in flares and which is colorized in gold.

NASA’s Solar Dynamics Observatory captured this image of a solar flare –  seen in the bright flash toward the middle of the image – on May 10, 2024. The image shows a subset of extreme ultraviolet light that highlights the extremely hot material in flares and which is colorized in gold. NASA/SDO

The sun has been unusually active this week, leading to stunning views of auroras across Europe and parts of the U.S. this weekend. On Friday, May 10, Earth was hit by the strongest solar storm in 20 years, and the activity has created light shows in the sky for many people who wouldn't normally see them.

Read more
James Webb telescope peers at the atmosphere of a rocky hell world
This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometres (0.015 astronomical units), completing one full orbit in less than 18 hours. In comparison, Mercury is 25 times farther from the Sun than 55 Cancri e is from its star. The system, which also includes four large gas-giant planets, is located about 41 light-years from Earth, in the constellation Cancer.

This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometers (0.015 astronomical units), completing one full orbit in less than 18 hours. NASA, ESA, CSA, R. Crawford (STScI)

When it comes to learning about exoplanets, or planets beyond our solar system, the James Webb Space Telescope is providing more information than ever before. Over the last decade or so, thousands of exoplanets have been discovered, with details available about these worlds, such as their orbits and their size or mass. But now we're starting to learn about what these planets are actually like, including details of their atmospheres. Webb recently investigated the atmosphere around exoplanet 55 Cancri e, finding what could be the first atmosphere of a rocky planet discovered outside the solar system.

Read more