Skip to main content

Perseverance rover collects its first sample from Jezero delta

Things are heating up on Mars, as the Perseverance rover begins its new science campaign. In its previous science campaign, the NASA rover explored the floor of the Jezero crater, but now it has moved on to investigate an exciting location called the delta. As the site of an ancient river delta, this region is a great location to search for evidence of ancient life and to find rocks carried from far-off locations by the river that was there millions of years ago.

Perseverance collected its first sample of this science campaign last week, on Thursday, March 30. This is the 19th sample of rock and dust that the rover has collected so far, with 10 of those samples carefully left behind in a sample cache on the Martian surface. The latest sample was collected from a rock named “Berea” which is thought to be made up of deposits that were carried by the river.

This image shows the rocky outcrop the Perseverance science team calls Berea after the NASA Mars rover extracted a rock core and abraded a circular patch. The image was taken by the rover's Mastcam-Z instrument on March 30, 2023.
This image shows the rocky outcrop the Perseverance science team calls Berea after the NASA Mars rover extracted a rock core and abraded a circular patch. The image was taken by the rover’s Mastcam-Z instrument on March 30, 2023. NASA/JPL-Caltech/ASU/MSSS

The rock sample seems to be rich in carbonate, making it an exciting target for scientists as it could potentially hold clues to whether there was ancient life nearby. “Carbonate rocks on Earth can be good at preserving fossilized lifeforms. If biosignatures were present in this part of Jezero Crater, it could be a rock like this one that could very well hold their secrets,” explained Katie Stack Morgan, deputy project scientist for Perseverance at NASA’s Jet Propulsion Laboratory, in a statement.

Recommended Videos

Carbonates are intriguing for another reason, which is that they could help to answer a long-standing mystery about Mars’ climate. Carbonates are formed when water and carbon dioxide interact with other compounds, and we know that there is plenty of carbon dioxide in the martian atmosphere and there was once plenty of water on the surface too. But we rarely see carbonate deposits on Mars today, and it’s not clear why. Understanding more about this mystery can help scientists build up a better picture of Mars’ history.

Please enable Javascript to view this content

“The Berea core highlights the beauty of rover missions,” said Perseverance’s project scientist, Ken Farley of Caltech. “Perseverance’s mobility has allowed us to collect igneous samples from the relatively flat crater floor during the first campaign, and then travel to the base of the crater’s delta, where we found fine-grained sedimentary rocks deposited in a dried lakebed.

“Now we are sampling from a geologic location where we find coarse-grained sedimentary rocks deposited in a river. With this diversity of environments to observe and collect from, we are confident that these samples will allow us to better understand what occurred here at Jezero Crater billions of years ago.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
How NASA is using AI on the Perseverance rover to study Mars rocks
akdjf alkjdhf lk

Space engineers have been using AI in rovers for some time now -- hence why today's Mars explorers are able to pick a safe landing site and to drive around a region autonomously. But something they haven't been able to do before now is to do science themselves, as most of that work is done by scientists on Earth who analyze data and point the rover toward targets they want to investigate.

Now, though, NASA's Perseverance rover is taking the first steps toward autonomous science investigation on Mars. The rover has been testing out an AI capability for the last three years, which allows it to search for and identify particular minerals in Mars rocks. The system works using the rover's PIXL instrument (Planetary Instrument for X-ray Lithochemistry), a spectrometer that uses light to analyze what rocks are made of. The software, called adaptive sampling, looks though PIXL's data and identifies minerals to be studied in more detail.

Read more
NASA axes its moon rover project VIPER
NASA’s VIPER – short for the Volatiles Investigating Polar Exploration Rover – sits assembled inside the cleanroom at the agency’s Johnson Space Center.

NASA’s VIPER -- short for the Volatiles Investigating Polar Exploration Rover -- sits assembled inside the cleanroom at the agency’s Johnson Space Center. NASA

NASA has announced it is scrapping its plans to send a rover to the moon. The Volatiles Investigating Polar Exploration Rover, or VIPER, project was intended to search the moon's polar regions for water, but will now be shelved due to budget issues. Originally slated to land on the moon in December 2022, the project had been delayed several times, and the most recent update was that it would not be ready until September 2025.

Read more
Mushroom houses: NASA wants to grow its own Mars habitats from fungi
A stool constructed out of mycelia after two weeks of growth. The next step is a baking process process that leads to a clean and functional piece of furniture.

Bricks produced using mycelium, yard waste, and wood chips as a part of the myco-architecture project. Similar materials could be used to build habitats on the Moon or Mars. NASA

When future astronauts set out for the moon or for Mars, they'll need some shelter. And while you might imagine cities on other planets being made of steel, or glass, or some high-tech carbon fiber compound, NASA has other ideas. The agency is funding research into growing their own habitats out of fungi.

Read more