Skip to main content

Peer inside the bar of a barred spiral galaxy in new James Webb image

The newest image from the James Webb Space Telescope shows a stunning display of dust and stars that form the bar of the barred spiral galaxy NCG 5068, located 17 million light-years away. Like our galaxy, the Milky Way, this galaxy has a central bar that is a more concentrated region of stars and dust compared to the arms that reach out from the galaxy’s center.

The image was taken using two of Webb’s instruments, the Mid-Infrared Instrument (MIRI) and the Near Infrared Camera (NIRCam). By looking in both the mid- and near-infrared wavelengths, Webb is able to pick out features like the swirls of dust and gas, as well as the stars in this region, with the bar of the galaxy glowing in the top left of the image.

A delicate tracery of dust and bright star clusters threads across this image from the NASA/ESA/CSA James Webb Space Telescope. The bright tendrils of gas and stars belong to the barred spiral galaxy NGC 5068, whose bright central bar is visible in the upper left of this image. NGC 5068 lies around 17 million light-years from Earth in the constellation Virgo.
A delicate tracery of dust and bright star clusters threads across this image from the James Webb Space Telescope. The bright tendrils of gas and stars belong to the barred spiral galaxy NGC 5068, whose bright central bar is visible in the upper left of this image. NGC 5068 lies around 17 million light-years from Earth in the constellation Virgo. ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

The bar of a barred spiral galaxy is typically a busy region of star formation, so this image was collected as part of a study into star formation in nearby galaxies. The Physics at High Angular resolution in Nearby GalaxieS project (PHANGS) involves both Webb and the Hubble Space Telescope, along with other ground-based telescopes like the Very Large Telescope and the Atacama Large Millimeter/submillimeter Array, and is a survey to take high-resolution images like this one of regions of star formation.

For this project, “Webb collected images of 19 nearby star-forming galaxies, which astronomers could then combine with catalogs from Hubble of 10,000 star clusters, spectroscopic mapping of 20,000 star-forming emission nebulae from the Very Large Telescope (VLT), and observations of 12 000 dark, dense molecular clouds identified by the Atacama Large Millimeter/submillimeter Array (ALMA),” Webb scientists write. “These observations span the electromagnetic spectrum and give astronomers an unprecedented opportunity to piece together the minutiae of star formation.”

Webb is particularly useful for studying star formation, because it looks in the infrared wavelengths. This allows its instruments to see through clouds of dust, which would be opaque in the visible light wavelength. In the image above, you can see the dust forming a green web-like structure between the stars, which glow as points of light. Bubbles of gas are shown in red.

You can also check out the views taken by MIRI and NIRCam individually.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb snaps a colorful image of a star in the process of forming
L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules.

L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. NASA, ESA, CSA, STScI

A stunning new image from the James Webb Space Telescope shows a young star called a protostar and the huge outflows of dust and gas that are thrown out as it consumes material from its surrounding cloud. This object has now been observed using two of Webb's instruments: a previous version that was taken in the near-infrared with Webb's NIRCam camera, and new data in the mid-infrared taken with Webb's MIRI instrument.

Read more
See a stunning 3D visualization of astronomy’s most beautiful object
This image is a mosaic of visible-light and infrared-light views of the same frame from the Pillars of Creation visualization. The three-dimensional model of the pillars created for the visualization sequence is alternately shown in the Hubble Space Telescope version (visible light) and the Webb Space Telescope version (infrared light).

This image is a mosaic of visible-light and infrared-light views of the same frame from the Pillars of Creation visualization. The three-dimensional model of the pillars created for the visualization sequence is alternately shown in the Hubble Space Telescope version (visible light) and the Webb Space Telescope version (infrared light). Greg Bacon (STScI), Ralf Crawford (STScI), Joseph DePasquale (STScI), Leah Hustak (STScI), Christian Nieves (STScI), Joseph Olmsted (STScI), Alyssa Pagan (STScI), Frank Summers (STScI), NASA's Universe of Learning

The Pillars of Creation are perhaps the most famous object in all of astronomy. Part of the Eagle Nebula, this vista was first captured by the Hubble Space Telescope in 1995, and has captivated the public ever since with its dramatic rising pillars of dust and gas that stretch several light-years high. The nebula has been imaged often since then, including again by Hubble in 2014 and more recently by the James Webb Space Telescope in 2022.

Read more
Hubble takes first image since switching to new pointing mode
This NASA Hubble Space Telescope features the galaxy NGC 1546.

This NASA Hubble Space Telescope captured an image of the galaxy NGC 1546. NASA, ESA, STScI, David Thilker (JHU)

The Hubble Space Telescope has been through some troubles of late, and the way that it operates had to be changed recently to compensate for some degraded hardware. The telescope's three gyros, which help it to switch between different targets in the sky, have been experiencing issues, with one in particular frequently failing over recent months. NASA made the decision recently to change the way that Hubble points, and it now uses just one gyro at a time instead of all three in order to preserve the two remaining gyros for as long as possible.

Read more