Skip to main content

Hubble image shows a lonely star glowing over an irregular background galaxy

This week’s image from the Hubble Space Telescope is notable for the way it was composed as much as for the object it shows. Composed of two different exposures which have been merged, it shows the star BD+17 2217 shining over the background irregular galaxy Arp 263.

Irregular galaxies are those with irregular structures, unlike elliptical galaxies or spiral galaxies such as our Milky Way. Arp 263 is patchy and cloudy, with some areas glowing brightly due to star formation while other areas appear practically bare. Such galaxies are typically formed due to interactions with other galaxies, which can occur when a massive galaxy passes by and pulls the original galaxy out of shape. In the case of Arp 263, it is thought that it developed its irregular shape when two galaxies merged.

The bright star BD+17 2217. Arp 263 – also known as NGC 3239 in the foreground and irregular galaxy Arp 263 in the background.
The irregular galaxy Arp 263 lurks in the background of this image from the NASA/ESA Hubble Space Telescope, but the view is dominated by a stellar photobomber, the bright star BD+17 2217. Arp 263 – also known as NGC 3239 – is a patchy, irregular galaxy studded with regions of recent star formation, and astronomers believe that its ragged appearance is due to its having formed from the merger of two galaxies. It lies around 25 million light-years away in the constellation Leo. ESA/Hubble & NASA, J. Dalcanton, A. Filippenko

What is unusual about this image is the way it was created and the effect that has on the distinctive diffraction spikes coming from bright objects. These spikes of light are caused by the mirror’s geometry that Hubble uses to observe distant objects. Typically Hubble images have four diffraction spikes (compared to the six prominent diffraction spikes seen in images from the James Webb Space Telescope), but in this case, you can see eight diffraction spikes from the brightest objects. This is because two different sets of data were combined to create the image, each taken at a different angle, so you see twice as many spikes.

Recommended Videos

“The interloping foreground star, BD+17 2217, is adorned with two sets of crisscrossing diffraction spikes. The interaction of light with Hubble’s internal structure means that concentrated bright objects, such as stars, are surrounded by four prominent spikes,” Hubble scientists explain. “Since this image of BD+17 2217 was created using two sets of Hubble data, the spikes from both images surround this stellar photobomber. The spikes are at different angles because Hubble was at different orientations when it collected the two datasets.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more
James Webb image shows two galaxies in the process of colliding
This composite image of Arp 107, created with data from the James Webb Space Telescope’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument), reveals a wealth of information about the star formation taking place in these two galaxies and how they collided hundreds of million years ago. The near-infrared data, shown in white, show older stars, which shine brightly in both galaxies, as well as the tenuous gas bridge that runs between them. The vibrant background galaxies are also brightly illuminated at these wavelengths.

A new image from the James Webb Space Telescope shows one of the universe's most dramatic events: the colliding of two galaxies. The pair, known as Arp 107, are located located 465 million light-years away and have been pulled into strange shapes by the gravitational forces of the interaction, but this isn't a purely destructive process. The collision is also creating new stars as young stars are born in swirling clouds of dust and gas.

The image above is a composite, bringing together data from Webb's NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). These two instruments operate in different parts of the infrared, so they can pick up on different processes. The data collected in the near-infrared range is seen in white, highlighting older stars and the band of gas running between the two galaxies. The mid-infrared data is shown in orange and red, highlighting busy regions of star formation, with bright young stars putting out large amounts of radiation.

Read more
Hubble images a pair of tiny dwarf galaxies
hubble dwarf galaxy pair ic3430 potw2431a 1

A new image from the Hubble Space Telescope shows a small dwarf galaxy called IC 3430 that's located 45 million light-years away. This galaxy is classified as both a dwarf galaxy, because of its small size, and an elliptical galaxy, because of its form.

Elliptical galaxies are smooth and featureless, appearing blob-like and diffuse, unlike spiral galaxies, like our Milky Way, which have a distinct structure of a central hub and stretching spiral arms.

Read more