Skip to main content

James Webb telescope captures stunning view of a famous supernova remnant

One of the satellite galaxies of the Milky Way, the Large Magellanic Cloud, is famous as the host of the nearest supernova to Earth in recent history. Supernova SN 1987A occurred when a massive star ran out of fuel and collapsed at the end of its life, setting off an enormous explosion that threw out a shock wave so powerful it reshaped the dust and gas around it for millions of miles in every direction.

That supernova left behind a remnant, a ring-shaped structure created as the shock wave traveled outward over time. This glowing ring has been frequently observed since the supernova was first seen in 1987. Now, the James Webb Space Telescope has provided one of the most detailed views yet of this stunning structure that was created from a destructive explosion.

Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Science: NASA, ESA, CSA, Mikako Matsuura (Cardiff University), Richard Arendt (NASA-GSFC, UMBC), Claes Fransson (Stockholm University), Josefin Larsson (KTH); Image Processing: Alyssa Pagan (STScI)

This image of SN 1987A was taken using Webb’s NIRCam instrument, and it shows a central keyhole-shaped structure full of dust and gas that was thrown off by the dying star as it came to the end of its life. While Webb’s infrared instruments are useful for looking through dust to reveal structures beneath, in the very center of the remnantm the dust is so dense that even infrared light cannot penetrate it, hence the dark clump in the very center.

Recommended Videos

The rings of material around the center are seen in more detail too, like the bright dots, which are hotspots created by the shock wave from the supernova hitting previously cast-off rings of material.

Astronomers combined observations from three different observatories (Atacama Large Millimeter/submillimeter Array, red; Hubble, green; Chandra X-ray Observatory, blue) to produce this colorful, multiwavelength image of the intricate remains of Supernova 1987A.
Astronomers combined observations from three different observatories to produce this colorful, multiwavelength image of the intricate remains of Supernova 1987A. NASA, ESA, A. Angelich (NRAO, AUI, NSF); Hubble image: NASA, ESA, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation) Chandra image: NASA/CXC/Penn State/K. Frank et al. ALMA image: ALMA (ESO/NAOJ/NRAO) and R. Indebetouw (NRAO/AUI/NSF)

As a famous supernova, SN 1987A has been previously observed many times before, including by space-based tools like the Hubble Space Telescope and the Chandra X-ray Observatory, as well as ground-based tools like the Atacama Large Millimeter/Submillimeter Array.

Please enable Javascript to view this content

The image above shows a combination of data from these three observatories, which operate in the optical, X-ray, and radio wavelengths respectively. These observations show the same structures as the Webb image, but in less crisp detail — demonstrating how useful Webb’s instruments are for getting a fresh look at well-known objects.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
View of Hurricane Milton captured from space by ISS astronaut
Hurricane Milton is pictured as a Category 5 storm in the Gulf of Mexico off the coast of Yucatan Peninsula from the space station on Oct. 8, 2024.

As Hurricane Milton approaches Florida and threatens to bring extreme weather and damage to the region, it is being tracked from space including by those on the International Space Station (ISS).

NASA has joined other federal agencies in urging residents in the area to evacuate. "FEMA is urging anyone in Milton’s path to evacuate immediately," NASA is warning. "Do not wait. Milton is currently a Category 4 storm tracking toward central Florida and is anticipated to make landfall Wednesday night."

Read more
James Webb discovers a new type of exoplanet: an exotic ‘steam world’
An artist’s conception of the “steam world” GJ 9827 d, shown in the foreground in blue.

Our solar system has a wide variety of planet types, from tiny rocky Mercury to huge puffy gas giant Jupiter to distant ice giant Uranus. But beyond our own system, there are even more types of exoplanet out there, including water worlds covered in ocean and where life could potentially thrive. Now, researchers using the James Webb Space Telescope have identified a new and exotic type of planet called a steam world, which has an atmosphere almost entirely composed of water vapor.

The planet, called GJ 9827 d, was examined by the Hubble Space Telescope earlier this year and had researchers so intrigued that they wanted to go back for a closer look using Webb. They found that the planet, which is around twice the size of Earth, had a very different atmosphere from the typical hydrogen and helium that is usually seen. Instead, it was full of hot steam.

Read more
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more