Skip to main content

A galaxy with layers like an onion shines in Dark Energy Camera image

A new image taken by the Dark Energy Camera shows a “galactic onion,” a shell galaxy with multiple layers that are spread out over a distance of 150,000 light-years. At around twice the size of the Milky Way, the galaxy NGC 3923 is large, but even larger is a nearby galaxy cluster that has so much mass that it is bending space-time, making the light from distant galaxies behind it bend like a magnifying glass in a process called gravitational lensing.

The Dark Energy Camera is ground-based instrument located at the Víctor M. Blanco 4-meter Telescope in Chile and was originally built to observe many galaxies as part of a project called the Dark Energy Survey. Now, it is also used for other observations such as imaging dwarf galaxies, merging galaxies, and more.

The symmetrical, onion-like layers of shell galaxy NGC 3923 are showcased in this galaxy-rich image taken by the US Department of Energy’s (DOE) Dark Energy Camera mounted on the National Science Foundation’s (NSF) Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. A nearby, massive galaxy cluster is also captured exhibiting the phenomenon known as gravitational lensing.
The symmetrical, onion-like layers of shell galaxy NGC 3923 are showcased in this galaxy-rich image taken by the U.S. Department of Energy Dark Energy Camera mounted on the National Science Foundation’s (NSF) Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile. A nearby, massive galaxy cluster is also captured exhibiting the phenomenon known as gravitational lensing. DESI Legacy Imaging Surveys/LBNL/DOE & KPNO/CTIO/NOIRLab/NSF/AURA Image processing: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), M. Zamani (NSF’s NOIRLab), R. Colombari (NSF’s NOIRLab) & D. de Martin (NSF’s NOIRLab)

The main feature of this image is the shell galaxy, which is a type of elliptical galaxy in which the stars are not spread evenly, but are instead arranged into shell-like structures. Spiral galaxies like the Milky Way don’t have this arrangement of stars, but it is thought that around one-tenth of elliptical galaxies do, and that the structure is created when two galaxies merge and a larger galaxy absorbs a smaller companion.

Recommended Videos

Two galaxies merging was what happened here, as NOIRLab explains: “As they merged, the larger galaxy’s gravitational field slowly peeled off stars from the smaller galaxy’s disk. Those stars began to gradually mix with the larger galaxy’s outer halo, forming concentric bands, or shells. A simple analogy is adding a drop of food color to a bowl of batter that you’re slowly stirring. The drop gets stretched out in a spiral that remains visible for a long time before completely mixing.”

Please enable Javascript to view this content

The other important feature of this image is harder to see, but is located at the top center. A massive galaxy cluster called PLCK G287.0+32.9 is bending space-time and warping the light coming from distant galaxies, making them appear stretched out.

To see the image in its full glory and to appreciate all the details, a large zoomable version of the image is available on the NOIRLab website.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Is dark energy changing over time? A new survey suggests it could be
An artistic celebration of the Dark Energy Spectroscopic Instrument (DESI) year-one data, showing a slice of the larger 3D map that DESI is constructing during its five-year survey. By mapping objects across multiple periods of cosmic history with extremely high precision, DESI is allowing astronomers to make unprecedented measurements of dark energy and its effect on the accelerating expansion of the Universe.

New results from a survey into dark energy show a look back  11 billion years into the past, revealing the locations of tens of thousands of galaxies in the largest ever 3D map of the universe. The results from the Dark Energy Spectroscopic Instrument Survey, or DESI, were released this week and show how the universe has expanded over billions of years.

The results so far are shown in a 3D map covering 600,000 galaxies, though incredibly this data is just 0.1% of the total volume of the full survey. The results have been plotted to show how galaxies appear to be moving away from us as the universe expands, with light that has traveled the furthest represented in red, referring to the most distant galaxies, and nearer galaxies represented in blue.

Read more
Stunning image shows the magnetic fields of our galaxy’s supermassive black hole
The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of our Milky Way black hole released in 2022, has captured a new view of the massive object at the center of our Galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of Sagittarius A*. This image shows the polarized view of the Milky Way black hole. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole.

The Event Horizon Telescope collaboration, the group that took the historic first-ever image of a black hole, is back with a new stunning black hole image. This one shows the magnetic fields twirling around the supermassive black hole at the heart of our galaxy, Sagittarius A*.

Black holes are hard to image because they swallow anything that comes close to them, even light, due to their immensely powerful gravity. However, that doesn't mean they are invisible. The black hole itself can't be seen, but the swirling matter around the event horizon's edges glows brightly enough to be imaged. This new image takes advantage of a feature of light called polarization, revealing the powerful magnetic fields that twirl around the enormous black hole.

Read more
Hubble images the spooky Spider Galaxy
This image from the NASA/ESA Hubble Space Telescope shows the irregular galaxy UGC 5829.

This week's image from the Hubble Space Telescope shows an irregular galaxy, the spindly arms and clawed shape of which has led to it being named the Spider Galaxy. Located 30 million light-years away, the galaxy also known as UGC 5829 is an irregular galaxy that lacks the clear, orderly arms seen in spiral galaxies like the Milky Way.

This image from the NASA/ESA Hubble Space Telescope shows the irregular galaxy UGC 5829. ESA/Hubble & NASA, R. Tully, M. Messa

Read more