Skip to main content

Asteroid impacted by spacecraft is reshaped like an M&M ‘with a bite taken out’

In 2022, the world watched with fascination as NASA deliberately crashed a spacecraft into an asteroid in a test of what kind of defense options might be available to humanity if an incoming asteroid ever threatened Earth. Observers could tell very quickly that the test, called the Double Asteroid Redirection Test or DART, was successful in changing the asteroid’s orbit. But now astronomers have learned more, finding that the impact may have reshaped the asteroid significantly.

The asteroid impacted, called Dimorphos, is very small at around 500 feet across, and the DART spacecraft crashed into it at a tremendous speed of nearly 4 miles per second. Researchers have now used computer modeling to see the effects of this impact, given the limited amount of information we have on the composition and uneven surface of Dimorphos.

An illustration shows a spacecraft from NASA's DART mission approaching the asteroid it was intended to redirect.
An illustration shows a spacecraft from NASA’s DART mission approaching the asteroid it was intended to redirect. NASA

The results have been interpreted into an animation, showing material being thrown off during the impact and the squished shape that is thought to remain. You can view the animation on the European Space Agency’s website.

Recommended Videos

Modelling the impact required a lot of computer power due to the many unknown factors at work. “This is a computationally intensive process, with each simulation taking around a week and a half to run, and we ran around 250 simulations overall, reproducing the first two hours after impact,” lead author Sabina Raducan of the University of Bern said in a statement.

“We incorporated all the values we did know – such as the mass of the DART spacecraft, the approximate shape of the asteroid, the orbital deflection and the size of the impact plume – while varying the factors we don’t know, such as the closeness of packing of boulders, their density, the porosity of material and its overall cohesion. We also made some reasonable assumptions based on the physical properties of meteorites resembling Dimorphos.”

The researchers took the results of their many simulations and looked for the one that mostly closely matched the data from the real test. They found that Dimorphos was likely deformed because it is not a single, solid mass but rather a collection of smaller pieces held together by gravity, called a rubble pile. That helped the DART spacecraft to cause such a big impact.

The fact that the asteroid is in a low-gravity environment also makes a difference. Here on Earth, when an object impacts another hard enough to leave a crater, the material from the impact tends to be thrown up briefly before falling due to gravity. But in space, where there is less gravitational force, the displaced material (called ejecta) was thrown up in a much wider cone, causing the crater on the surface to grow.

“The likelihood is that the crater grew to encompass the entire body itself, so that Dimorphos ended up being completely reshaped,” Raducan explained. And that has consequences for future missions planning to visit the asteroid to learn more about DART’s effect, such as the European Space Agency’s Hera mission.

“As a consequence, Hera will probably not be able to find any crater left by DART. What it will discover instead will be a very different body. Our simulations suggest that Dimorphos has had its initial flying saucer shape blunted on its impact side: If you think of Dimorphos as starting out as resembling a chocolate M&M, now it would look like it has had a bite taken out of it!”

The research is published in the journal Nature Astronomy.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA sets new target launch date for Starliner spacecraft
The Starliner atop an Atlas V rocket.

The Starliner spacecraft sits atop an Atlas V rocket at the Kennedy Space Center in Florida. NASA/Joel Kowsky

After calling off the launch of Boeing Space’s Starliner spacecraft on Saturday with just minutes to go, NASA says it's now aiming to send the vehicle on its first crewed mission at 10:52 a.m. ET on Wednesday, June 5.

Read more
NASA’s Orion spacecraft has ‘critical issues’ with its heat shield, report finds
The Orion crew module for NASA’s Artemis II mission.

The Orion crew module for NASA’s Artemis II mission. NASA/Kim Shiflett

NASA is intending to use its new Orion capsule to send astronauts to the moon under its Artemis program, but a new report finds that issues with the capsule's heat shield could be a risk to crew safety. The report from NASA's inspector general was released this week and details issues with the heat shield, which lost some material during the first flight of Orion during the Artemis I mission in 2022.

Read more
Psyche spacecraft sends data back to Earth using lasers for the first time
NASA’s Psyche spacecraft is shown in a clean room at the Astrotech Space Operations facility near the agency’s Kennedy Space Center in Florida on Dec. 8, 2022. DSOC’s gold-capped flight laser transceiver can be seen, near center, attached to the spacecraft.

NASA's experimental laser communication system, riding along with the Psyche spacecraft, has hit another milestone. The system was recently used to transmit Psyche data from over 140 million miles (226 million kilometers) away.

The system, called Deep Space Optical Communications, or DSOC, has previously been used to send test data and even to send a video of a cat, to test whether using laser communications in addition to the usual radio communications is possible. But as this is technology is experimental, the Psyche spacecraft has its own radio communications system it has been using to transmit its science data. Now, though, DSOC has been able to interface with the Psyche systems and send Psyche engineering data back to Earth as well.

Read more