Skip to main content

Inside the Lamborghini lab that’s reinventing carbon fiber

It’s easy to draw parallels between a Lamborghini and an airplane. Both boast a wind-cheating design, both are incredibly quick, and both are coveted by the rich and the famous. The fighter jet-style start switch on the center console of the brand’s most recent models adds substance to the comparison, as do the toggle switches on the dashboard. But, the similarities are more than skin-deep.

Like airplane and helicopter manufacturers, Lamborghini relies heavily on advanced composite materials such as carbon fiber to make its cars as light as possible. Some of the technology – and the way it’s applied during the development process – comes straight from the world of aerospace.

Lamborghini handles every step of the production process in-house; its engineers call this a building block approach. To find out how it’s done, we flew to the company’s headquarters in Sant’Agata Bolognese, Italy, put on a uniform, and spent a day shadowing workers.

The Seattle connection

Lamborghini began dabbling in carbon fiber in 1982. At the time, its cars were largely built using various types of sheet metal, and the composites department was just a tiny fragment of the brand’s research and development effort.

Lamborghini’s composites department built an experimental Countach prototype with a full carbon fiber monocoque a year after it was founded.

By chance, some of the engineers who founded the department were Italians that had previously worked for Boeing in Seattle, Washington. They diligently applied the lessons learned while developing the 767 airliner to the world of high-end, high-performance cars. The team was made up of just five people, yet it managed to build an experimental, fully-functional Countach prototype with a full carbon fiber monocoque only a year after the department was founded.

The composites department grew in size during the 1980s and the 1990s after executives accurately predicted carbon fiber was the future of supercars. By 1998, all of the Diablo GT’s exterior body panels were made from the lightweight material. In 2011, the Aventador debuted an ultra-light carbon fiber body.

Going straight to the source

As we step inside the carbon fiber development center, we’re greeted not by a technician with oil-stained hands but by a researcher in a black lab coat. The first step of the process is to test samples (called coupons) to learn how various types of carbon fiber withstand pressure.

The small, rectangular coupons are bent until they snap, crushed by hundreds of pounds, and subjected to extreme temperatures on both ends of the thermometer. They’re examined under a powerful microscope to identify even the tiniest imperfections that can later cause much bigger issues. Nothing is left to chance in the research lab.

The valuable data gathered during these tests is used to manufacture elements, assemblies, components, and, ultimately, a full car. Attilio Masini, Lamborghini’s head of materials technology and manufacturing engineering, tells us this bottom-up approach came directly from Boeing.

He explains it’s extremely important for Lamborghini to have full control over the entire production process. No step is outsourced, but engineers and researchers frequently exchange ideas with Boeing and the University of Washington.  The collaboration gives Lamborghini access to advanced software that allows it to calculate how a specific carbon fiber component will fare in an accident without needing to stuff an expensive prototype into a wall.

Rolls of carbon fiber are stored in a massive walk-in freezer reminiscent of the cold room you’d find in a butcher’s shop.

Members of the R&D department can tell ahead of time which parts of, say, an Aventador body will absorb impact. This greatly reduces the time it takes to get a car certified for road use.

From the freezer to the oven

Production of carbon fiber components takes place deep inside the growing Lamborghini complex. It’s not what you imagine when you think of a car factory. It’s well lit, the floors are clean enough to eat off of, and the entire process is done by hand so the facility is almost as quiet as a library.

To experience the process first hand, we’re instructed to make a small part with ridges and grooves that R&D cuts up and uses for various tests. Having never played with carbon fiber before, we were surprised by how much time it takes to churn out a relatively simple part.

Rolls of carbon fiber are stored in a massive walk-in freezer reminiscent of the cold room you’d find in a butcher’s shop. Once they’ve thawed, they’re cut to shape with a knife, because using a laser would create too much heat. With four small sheets of the material in hand, we set out to make our first part.

The sheets must be carefully placed in a mold one layer at a time, and pressed down using a plastic tool to ensure a tight fit. The mold is placed in a vacuum bag to remove the air that gets trapped in between the layers. It sounds relatively simple when you read about it, but making the wave-shaped part took us about 45 minutes. It’s then baked in a large oven for about six hours.

Carbon fiber parts need to look good, and they also need to be durable; craftsmanship is the name of the game in Sant’Agata. Consequently, the process of manufacturing even a basic component like a piece of trim is highly meticulous. Lamborghini explains it takes roughly a year before new workers are allowed to make carbon fiber parts on their own.

While our part hardens, we head over to a different part of the factory to learn about what insiders proudly refer to as carbon fiber 2.0.

The carbon fiber of the future

Not one to rest on its laurels, Lamborghini has developed a brand-new type of carbon fiber named Forged Composites. The name might not sound familiar, but you’ve seen it before if you’ve been keeping up with Lamborghini news. It’s that cool, high tech-looking material prominently featured on the Sesto Elemento and, more recently, on the Huracán Performante. It was designed in-house, and the company’s brightest minds agree it’s the carbon fiber of the future.

Designers love working with Forged Composites because it gives parts a unique look, and it can be shaped in ways that regular carbon fiber can’t.

On paper, Forged Composites is similar to the carbon fiber we’ve gotten used to seeing in cars. Rolls of it are stored in a freezer until they need to be turned into parts. They’re also cut with a knife, and carefully placed in a mold layer by layer. However, the other tasks are entirely automated.

Again, we’re instructed to make a small, wavy part used by members of the R&D staff for testing. This time, there is no need to poke, nudge, or force the material into a mold; a vertical press handles that part of the process with a single powerful strike. And, instead of sitting in an oven for hours, for fifteen minutes the part is placed in a purpose-built machine that heats it up to 275 degrees Fahrenheit while applying over 1,100 PSI of pressure.

Right now, Forged Composites is used to make components like spoilers, bumpers, interior trim parts, and shift paddles. It will gradually replace carbon fiber on the assembly line, meaning it’s not too far-fetched to imagine one day Lamborghini will make a full monocoque out of Forged Composites. When it reaches that point, the brand will be able to increase production of its super sports cars as it sees fit.

Ronan Glon/Digital Trends
Ronan Glon/Digital Trends

“Forged Composites provides the right balance between weight reduction, performance, and safety in our super sports cars,” Masini told us.

Lamborghini designers love working with Forged Composites because it gives parts a unique look, and it can be shaped in ways that regular carbon fiber can’t. Engineers praise the material because it’s highly resistant to damage, and it’s easy to drill or trim. That’s why everyone at the factory refers to it as carbon fiber 2.0, and we’re going to be seeing much more of it in the coming years.

Ronan Glon
Ronan Glon is an American automotive and tech journalist based in southern France. As a long-time contributor to Digital…
Rivian, VW venture kicks off next-gen platform for R1, Scout EVs
Rivian R2, R3, and R3X

The big challenge for Rivian, the EV maker known for its innovative electric and software systems, has long been how to reach the next stage of growth.

That stage came within reach in June, when the California-based company and Volkswagen announced a joint venture involving a $5 billion injection from the German automaker.

Read more
Kia EV3: everything we know so far
White Kia EV3

Kia is on a roll. Hot on the heels of the success of the Kia EV6 and EV9, the company is now expanding its lineup even further, with the new EV3.

The EV3 was announced some time ago, but it's now rolling out in Europe with a solid range and a relatively low price tag. That low price tag, however, thankfully doesn't mean that the EV3 is a low-end vehicle -- on the contrary, it still offers everything you know and love about modern Kia vehicles.

Read more
I reviewed an electric car like it was a phone, and I came to a shocking conclusion
The front of the Cupra Born VZ.

The Cupra Born VZ is not a smartphone — it’s an electric car. Yet, during my time driving it over the last five days, it has reminded me more than once about the device I spend most of my time using and reviewing.

This is not a put-down, nor is it a comment on electric versus combustion-engine vehicles, but more about how I, someone who doesn’t professionally review cars, can still easily recognize what’s good and bad about it. What’s more, the categories I usually break phone reviews down into, and the language I regularly use to talk about them, also neatly applies to the Born VZ.

Read more