Skip to main content

Is Nvidia DLSS about to become obsolete? Here’s the proof

Nvidia Deep Learning Super Sampling (DLSS) has been the upscaling tech for over two years, but a new challenger is approaching. Ghostwire Tokyo showcases a relatively new technique in Unreal Engine 5 called Temporal Super Resolution (TSR) that looks and performs nearly as well as DLSS does, and it has a big advantage: It works with any graphics card.

DLSS has enjoyed the limelight as a proprietary supersampling technique that delivers much better image quality than competitors like AMD FidelityFX Super Resolution (FSR). Companies like AMD haven’t been idle, though, and general-purpose upscaling solutions like FSR 2.0 and TSR will make DLSS obsolete.

A spirit with a dog paw attacks in Ghostwire: Tokyo.
Bethesda

TSR is a feature of Unreal Engine 5, but developer Tango Gameworks was able to get it working in the UE4-based Ghostwire TokyoUnlike DLSS, it doesn’t require dedicated A.I. accelerators to work. Instead, it feeds temporal (timed-based) data into a supersampling algorithm to upscale the image.

Recommended Videos

Although TSR is an emerging feature, it’s already being put to use in other places. AMD’s upcoming FSR 2.0 overhaul is a prime example, utilizing temporal inputs that feed a supersampling algorithm. Ghostwire Tokyo provides a glimpse at the future of PC graphics: One where every game has high-quality upscaling that works across GPUs.

Get your weekly teardown of the tech behind PC gaming
Check your inbox!

The image below shows TSR, FSR 1.0, and DLSS next to each other, in that order. DLSS and TSR look identical. Even massively zoomed in, I can’t find any significant differences. Compare that to FSR 1.0, which has black spots in the blue Tottoko Cine sign, as well as a dirty edge around the green sign below it.

An upscaling comparison in Ghostwire Tokyo.
Image used with permission by copyright holder

In a scene with sharp detail, the same holds true. TSR and DLSS look the same, and FSR 1.0 has problems. Notice the TV hanging up on the left, which is much blurrier with FSR 1.0, as well as the dimmer lights going down the hallway. With FSR 1.0, these lights flickered as the upscaling algorithm struggled to keep up. With TSR and DLSS, they were stable.

A comparison of FSR, TSR, and DLSS in Ghostwire Tokyo.
Image used with permission by copyright holder

The main draw of DLSS has been its excellent image quality, which Nvidia has attributed to the dedicated Tensor cores in RTX 30-series and 20-series graphics cards. Ghostwire Tokyo shows that dedicated hardware isn’t doing much. TSR looks just as good, and if FSR 2.0 is indeed similar, it should, too.

We can’t ignore performance, though. At 4K with ray tracing turned on and all of the sliders maxed out (minus motion blur), I was averaging 40 frames per second (fps). TSR was able to more than double my frame rate, boosting it to 84 fps.

It’s a massive improvement, though not quite as large as the ones offered by FSR 1.0 and DLSS. FSR 1.0 shook out with an average 90 fps, while DLSS sat on top with a 100 fps average. While 16% better performance for DLSS is significant, when TSR can already double your frame rate, it doesn’t seem as important.

We might be seeing a repeat of Nvidia G-Sync here. DLSS has been a walled garden since it launched, and TSR shows that restrictive approach may not have been necessary. As other companies push their collective knowledge to build better products for gamers, we’re getting similar image quality and performance without the need to shell out for a GPU with a certain brand on it.

FSR 2.0 and TSR are enough to kill DLSS on their own, and with Intel’s upcoming XeSS technology in the mix, the future doesn’t look bright for Nvidia’s upscaling tech. Consider game developers, too. If a solution like TSR can offer similar performance and image quality as DLSS, and it works across GPUs and consoles, that just makes more sense.

The future may not be bright for DLSS, but it is for PC gamers. If Ghostwire Tokyo is a sign of what’s to come, PC gamers are in for more upscaling options that work with more hardware while still providing near-native image quality.

Jacob Roach
Lead Reporter, PC Hardware
Jacob Roach is the lead reporter for PC hardware at Digital Trends. In addition to covering the latest PC components, from…
I’m worried about the Nvidia RTX 4080 Super
MSI RTX 4080 Suprim X installed in a PC.

I'm worried about Nvidia's upcoming RTX 4080 Super, but probably not for the reason you think. Nvidia revealed the long-rumored GPU at CES 2024, and perhaps the most shocking news around the announcement was that Nvidia was going to drop the price. Instead of releasing at the same $1,200 list price as the original RTX 4080, the RTX 4080 Super is launching at $1,000.

It's a great price, and a positive step for Nvidia, which has largely been seen as the driving force behind high GPU prices over the past year. I'm worried the price might be too good, though.

Read more
Intel is cooking up an exciting DLSS 3 rival
Kena Bridge of Spirits on the Samsung Odyssey OLED G9.

Intel is working on a rival to Nvidia's DLSS 3. Intel and researchers from the University of California published a paper detailing the tech, currently dubbed ExtraSS, at Siggraph Asia 2023 (spotted by Wccftech). It accomplishes the same goal as DLSS 3 by generating new frames to improve performance. Unlike DLSS 3, however, ExtraSS uses frame extrapolation, not frame interpolation.

That latter method is how DLSS 3 (and AMD's FSR 3) works. It takes two sequential frames and compares them to generate a frame in-between. This naturally means you're playing on a slight delay, as the tech needs both the current and next frame to do its dirty work. Intel is proposing a technique that uses extrapolation, where it uses data only from previous frames to predict the next frame. That gets rid of the latency issue currently present in DLSS 3.

Read more
Alan Wake 2 is proof that more PC games need a potato mode
Alan Wake 2 running on the Samsung Odyssey OELD G9.

Alan Wake 2 is one of the most beautiful games I've ever played -- and it's the frontrunner for the most demanding PC game you can currently run. For as impressive as the game is, from its path-traced reflections to the extensive use of Nvidia tech, it's so demanding that some otherwise-powerful PCs won't be able to post playable frame rates.

It's clear developer Remedy set out to create a certain atmosphere with Alan Wake 2 that can only be captured with photorealistic visuals. That said, Alan Wake 2 is  proof that more PC games need to adopt a stripped-back graphics setting, even if that means sacrificing a part of what makes the game special.
What in the world is a potato mode?
A potato mode is something so easy to run that you could run it on a potato -- not literally, of course, but that's the sentiment. It's a kill switch graphics option that will only be used by a small fraction of PCs, but it can help the least powerful (and least expensive) rigs at least run an otherwise demanding PC game.

Read more