Skip to main content

Check out this supercomputer’s stunning image of a supernova remnant

Australia’s newest supercomputer has crunched masses of data to create a stunning image of a supernova remnant.

The supercomputer — named Setonix after Western Australia’s favorite animal, the quokka (Setonix brachyurus) — created the highly detailed image using data collected by ASKAP (Australian Square Kilometre Array) radio telescope, which is operated by CSIRO (Commonwealth Scientific and Industrial Research Organisation), the country’s science agency.

Recommended Videos

Setonix is located at the Pawsey Supercomputing Research Centre in Perth and is a key part of the facility’s recent $70 million upgrade. The supercomputer is being installed in two stages, with the second stage expected to be up and running by the end of 2022.

Dr. Pascal Elahi, Pawsey’s supercomputing applications specialist, said that processing data from ASKAP’s astronomy surveys “is a great way to stress-test the Setonix system and see what is possible.”

An image of a supernova remnant created by Setonix, Australia's newest supercomputer.
This radio continuum (943.5 MHz) ASKAP image is of the galactic supernova remnant G261.9+5.5, located somewhere between 10,000 and 15,000 light years away. It was originally discovered by CSIRO scientist E. R. Hill in 1967, however not much is known about it. The morphology of the remnant revealed in the ASKAP image will aid in studying the remnant and its surrounding medium in unprecedented detail. Researchers hope to retrieve more information about the remnant’s age, size, and type from this data. Credit: Dr Wasim Raja/CSIRO, Dr Pascal Elah/Pawsey

Dr. Wasim Raja, a researcher on CSIRO’s ASKAP team, said the challenges in imaging a complex object like a supernova remnant (essentially the clouds of material that emerge from the explosion of a huge star at the end of its life) made it the ideal dataset for testing Setonix’s processing software.

“Setonix’s large, shared memory will allow us to use more of our software features and further enhance the quality of our images,” Raja said. “This means we will be able to unearth more from the ASKAP data.”

When the second stage of Setonix is fully deployed, the supercomputer will be up to 30 times more powerful than the combined capability of Pawsey’s earlier systems, Galaxy and Magnus.

The increased processing power means that we can expect even more incredible images from Setonix as ASKAP plans to send it more data from larger and deeper surveys of the sky.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more
Four telescopes work together to create a gorgeous image of a supernova remnant
This deep dataset from Chandra of the remains of a supernova known as 30 Doradus B (30 Dor B) reveals evidence for more than one supernova explosion in the history of this remnant. Unusual structures in the Chandra data cannot be explained by a single explosion. These images of 30 Dor B also show optical data from the Blanco telescope in Chile, and infrared data from Spitzer. Additional data from Hubble highlights sharp features in the image.

A stunning new image of a supernova remnant combines data from four different telescopes to show a colorful, detailed picture of a busy region of space. The remnant 30 Doradus B (or 30 Dor B) was created when a massive star came to the end of its life and exploded, and while the explosion was only brief, it sculpted the dust and gas around the star in a way that remains visible even now, thousands of years later.

This deep dataset from Chandra of the remains of a supernova known as 30 Doradus B (30 Dor B) reveals evidence of more than one supernova explosion in the history of this remnant. Unusual structures in the Chandra data cannot be explained by a single explosion. These images of 30 Dor B also show optical data from the Blanco telescope in Chile, and infrared data from Spitzer. Additional data from Hubble highlights sharp features in the image. Credit: X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Optical: NASA/STScI/HST; Infrared: NASA/JPL/CalTech/SST; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand

Read more
SpaceX shares stunning images of Saturday’s Starship launch
SpaceX's Starship rocket leaving the launchpad on Saturday.

SpaceX has released some stunning images of its Starship rocket heading skyward during its second integrated test flight on Saturday.

The images (below) show the 33 Raptor engines of the first-stage Super Heavy booster as the world’s most powerful space vehicle blasted off the launchpad at SpaceX's Starbase facility in Texas, creating around 17 million pounds of thrust in the process.

Read more