Skip to main content

VR-induced ‘cybersickness’ could soon be eradicated with a clever new algorithm

Kagenova

Jaron Lanier, the man who coined the term “virtual reality,” tells a story about how, in the 1980s, Steven Spielberg had Lanier’s lab demo some VR tech for the studio boss at Universal Pictures. The movie executive was receptive, but asked Lanier whether the VR headsets would make people sick. Lanier said that, in their present state, there was a chance that they could, but that the lab would continue working on this problem until it was no longer a concern.

Recommended Videos

“Kid,” said the studio executive, addressing the then-twentysomething-year-old Lanier. “You don’t know the first thing about entertainment. I want to see headlines about my janitors quitting because of the vomit.”

It’s a great anecdote. It’s also one that highlights the difference between those who view VR as a fun, short-term gimmick, and those who see it as a long-term, valuable platform for experiencing simulated reality.

Put simply: If it’s the former, vomit is good. If it’s the latter, it’s most certainly not. The majority of people working in VR, or buying VR headsets, would probably lean toward the second of these two options.

A solution is at hand

Kagenova

It’s these people that Jason McEwen, a professor of Astrostatistics and Astroinformatics at University College London, and the founder and CEO of a startup called Kagenova, is trying to help. McEwen’s startup has created a new algorithm it claims can help reduce VR-induced barfing — or, as it’s better known, cybersickness.

“In my opinion, cybersickness has been the biggest hurdle to the uptake of VR,” McEwen told Digital Trends. “Systems of old had very large lags and low refresh rates. These long delays also induced cybersickness. Great progress was made in the early to mid-2010s, essentially eliminating significant lags and greatly increasing frame rates. Nevertheless, outstanding technical hurdles have remained. At Kagenova, we are attempting to solve problems such as these to help usher in mass adoption of VR.”

The company’s system, called Copernic360, alleviates cybersickness by bringing six-degrees-of-freedom motion to 360-degree VR experiences. This is content, such as 3D videos, which are filmed on static cameras covering all surrounding directions, letting viewers look around inside scenes in a way that makes them feel like they are actually there.

copernic360

The idea of simulating motion, essentially adding even more motion, to a VR experience, might sound counterproductive. A person getting queasy in virtual reality surely needs less motion, not more. But that’s not accurate. VR sickness — symptoms of which can include headache, vertigo, and nausea — is thought to be due to a conflict between the body’s vestibular system, which contributes to balance and spatial orientation, and the visual system. One of these experiences motion when using VR, while the other does not. This mismatch of signals is what is believed to trigger motion sickness.

Putting the brain right again

“With Copernic360, when the user moves in the physical world, their motion is reflected in the virtual world,” McEwan said. “Their vestibular system, which senses their physical motion, matches what is experienced by their visual system. By ensuring these two systems remain in harmony, and not in conflict, Copernic360 eliminates the visual-vestibular conflict of standard 360-degree VR experiences.”

Essentially, what it does is to use A.I. to morph images ever-so-slightly in order to add movement. It’s a bit like how animation “in-betweeners” draw extra frames between keyframes to make movement seem smoother. “The user is then able to move about in the reconstructed scene, and novel synthetic viewpoints are then rendered on the fly and served to the user depending on their position in the scene,” continued McEwen.

copernic360 in action

The Copernic360 system was recently put through its paces using HTC Vive headsets by researchers at Royal Holloway University of London.

“We asked participants to walk and look around in an immersed 360-degree VR environment,” Elisa Ferrè, a senior lecturer in Perception, Action and Decision Making in Royal Holloway’s department of psychology, told Digital Trends. “We presented a neutral VR scenario which consisted of a beach, and participants were asked to explore it for about 10 minutes. In one experimental session, participants were exposed to standard 360-degree VR, while in another session they were exposed to Copernic360. At the end of each experimental session, participants were asked to complete a questionnaire about cybersickness symptoms.”

The participants reported experiencing 33% less nausea when they were using the Copernic360.

A work in progress

To be clear, this is not a catch-all solution for removing cybersickness. Different uses of VR will require different approaches. The key to reducing cybersickness appears to involve simulating the altered or missing sensory signal — which could alternatively be done using the likes of artificial vestibular stimulation or special motion platforms. The Copernic360 is designed specifically for 360-degree VR in which the user is free to move, but normally visual information about self motion is not corroborated.

“The main issue related to cybersickness is, in my opinion, the level of precision of the vestibular organs,” Ferrè said. “[It] is not easy to mimic the sophistication of the signals transmitted by the vestibular system in terms of rotational and translational acceleration of the head. [However,] by developing effective multisensory VR experience, we might be able to overcome current limitations and improve VR immersion.”

A paper describing the recent research, titled “Reducing cybersickness in 360-degree virtual reality,” is available to read online.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
This new VR headset beats the Vision Pro in one key way and is half the price
Pimax Crystal Super and Light VR headsets appear on a dark background.

While the Apple Vision Pro offers ultra-high-resolution displays with 23 million pixels, the staggering $3,500 price might inspire you to look for Vision Pro alternatives.

Good news: Pimax just announced two new VR headsets, including a budget model that costs as low as $799 and a more advanced version starting at $1,799. Both are based on the design of one of the best VR headsets currently available -- the Pimax Crystal that launched in May 2023 for $1,599 -- but come with a serious upgrade in terms of resolution.
Pimax Crystal Super

Read more
Your Quest 3 just got so much better — for free
First Encounter is the perfect introduction to mixed reality on Quest 3.

First Encounter is the perfect introduction to mixed reality on the Quest 3. Meta

The Quest 3 already boasted the best mixed reality experience of any VR headset other than the Apple Vision Pro. Now, as part of the v64 update, the Quest 3's passthrough quality is about to get even better, with less graininess in lower light, more detail, and better handling of phone screens.

Read more
We have some bad news for Quest owners
The original Oculus Quest 1 appears on a white background.

If you've been holding onto your original Oculus Quest or Quest 1 VR headset, it's time to upgrade because support is ending soon. The Quest 1 came out in 2019, so this headset is nearly five years old and quickly approaching the end of support. In August 2024, the original Quest will stop receiving security updates and bug fixes.

Meta recently emailed developers with an alert that new VR games and apps will be blocked from supporting the Quest 1 next month. Updates to existing apps will also cease. The Quest 1 will still have access to a large library of games, but to enjoy the latest releases, it's time to upgrade. This news follows a slow pullback that started last year when social features were removed.

Read more