Skip to main content

From drones to bionic arms, here are 8 examples of amazing mind-reading tech

Mind-reading tech is here to help, not put you away for thoughtcrime

Elon Musk is a firm believer that brain-computer interfaces will be a big part of how we interact with computers in the future. But make no mistake: Mind-reading machines are here already. As science fiction writer William Gibson has noted, “The future is already here — it’s just not evenly distributed.”

Without further ado, then, here are eight examples of amazing mind-reading tech being explored in some of the world’s most exciting research labs.

Recommended Videos

Mind-reading hearing aids

kzenon / 123RF Stock Photo

Hearing aids are amazing inventions, but they run into problems in certain scenarios, such as crowded rooms where multiple people are speaking at the same time. One possible solution? Add in a dose of mind-reading.

That’s the broad idea behind a so-called “cognitive hearing aid” developed by researchers at the Columbia University School of Engineering and Applied Science. The device is designed to read brain activity to determine which voice a hearing aid user is most interested in listening to, and then focusing in on it. It’s still in the R&D phase, but this could be a game-changer for millions of deaf or hard of hearing people around the world.

“Working at the intersection of brain science and engineering, I saw a unique opportunity to combine the latest advances from both fields, to create a solution for decoding the attention of a listener to a specific speaker in a crowded scene which can be used to amplify that speaker relative to others,” Nima Mesgarani, an associate professor of electrical engineering, told Digital Trends.

Future interrogation techniques

Ken Jones/University of Toronto

Want an idea of what future interrogation scenarios might look like? Researchers at Japan’s Ochanomizu University have developed artificial intelligence that’s capable of analyzing a person’s fMRI brain scans and providing a written description of what they have been looking at. Accurate descriptions can extend to the complexity of “a dog is sitting on the floor in front of an open door” or “a group of people standing on the beach.”

Ichiro Kobayashi, one of the researchers on the project, said that there are no plans to use it as the basis for a supercharged lie detector… just yet, at least. “So far, there are not any real-world applications for this,” he told Digital Trends. “However, in the future, this technology might be a quantitative basis of a brain-machine interface.”

Another project from neuroscientists at Canada’s University of Toronto Scarborough was able to recreate the faces of people that participants had previously seen.

Next-gen bionic prostheses

The Mind-Controlled Bionic Arm With a Sense of Touch

Bionic prostheses have made enormous strides in recent years — and the concept of a mind-controlled robot limb is now very much a reality. In one example, engineers at Johns Hopkins built a successful prototype of such a robot arm that allows users to wiggle each prosthetic finger independently, using nothing but the power of the mind.

Perhaps even more impressively, earlier this year a team of researchers from Italy, Switzerland, and Germany developed a robot prosthesis which can actually feed sensory information back to a user’s brain — essentially restoring the person’s sense of touch in the process.

“We ‘translate’ information recorded by the artificial sensors in the [prosthesis’] hand into stimuli delivered to the nerves,” Silvestro Micera, a professor of Translational Neuroengineering at the Ecole Polytechnique Fédérale de Lausanne School of Engineering, told Digital Trends. “The information is then understood by the brain, which makes the patient feeling pressure at different fingers.”

Early warning epilepsy warnings

Hospital uses wearable device to create new healthcare reality for people with epilepsy

For people with epilepsy, seizures can appear to come out of nowhere. Unchecked, they can be extremely dangerous, as well as traumatic for both the sufferer and those people around them. But mind-reading tech could help.

Researchers at the University of Melbourne and IBM Research Australia have developed a deep learning algorithm which analyzes the electrical activity of patients’ brains and greatly improves seizure prediction.

“Our hope is that this could inform the development of a wearable seizure warning system that is specific to an individual patient, and could alert them via text message or even a fitbit-style feedback loop,” Stefan Harrer, an IBM Research Australia staff member who worked on the recent study, told Digital Trends. “It could also one day be integrated with other systems to prevent or treat seizures at the point of alert.”

Treating impulsive behavior

888 online gambling
Image used with permission by copyright holder

In not dissimilar work, researchers from Stanford University School of Medicine have developed mind-reading tech that could be used to moderate dangerously impulsive behavior.

Their system watches for a characteristic electrical activity pattern in the brain which occurs prior to impulsive actions, and then applies a quick jolt of targeted electricity. (No, it’s not as painful as that makes it sound!)

“This is the first example in a translatable setting that we could use a brain machine interface to sense a vulnerable moment in time and intervene with a therapeutic delivery of electrical stimulation,” Dr. Casey Halpern, assistant professor of neurosurgery, told Digital Trends. “This may be transformative for severely disabling impulse control disorders.”

Controlling virtual reality

University of Michigan

Imagine if it was possible to navigate through a virtual reality world without having to worry about any handheld controller. That’s the idea behind a project by tech company Neurable and VR graphics company Estudiofuture. They’re busy developing the technology that will make brain-controlled virtual reality a… well, real reality.

Neurable’s custom headset monitors users’ brain activity using head-mounted electrodes to determine their intent. While there are limitations (it’s not ideal for typing or navigating menus), it could nonetheless be invaluable for making fields like VR gaming even more immersive than they already are.

Mind-reading drones

Image used with permission by copyright holder

When we control a vehicle, it’s important that our ability to manipulate its controls are as close as possible to our ability to perceive potential obstacles. In other words, we see something; we process it; our brain tells our hands to turn the wheel. Wouldn’t it be a whole lot easier if we just cut out the middleman?

That’s the concept behind neural interfaces which make it possible to steer drones (or even swarms of drones) using nothing more than our thoughts. Back in 2016, the University of Florida made headlines when it organized the world’s first ever brain-controlled drone race. Participants donned electroencephalogram headsets powered by brain-computer interface (BCI) technology, and then flew drones around a course using only their brainwaves.

While there’s still work to go, this could potentially be a useful method of rethinking the way in which future vehicles are piloted. Speaking of which…

The brainy way to drive a car

Renault KADJAR presenterar Team Will Power

So you’ve got a new possible means of controlling a vehicle using brainwaves, but it’s not quite ready for prime time just yet. What do you test it on? Driving a car, of course — with the passengers inside. At least, that was the basis for an intriguing (if terrifying) experiment carried out by carmaker Renault late last year.

The company recruited three willing participants and gave them the opportunity to work together to mentally pilot a modified Renault Kadjar SUV. One person controlled the car’s left turns, another controlled its right turns, and the third handled its acceleration.

No, this is unlikely to make it to our roads any time soon, but it’s certainly a memorable tech demo. Even if, quite frankly, we’d rather walk to pick up our groceries!

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Range Rover’s first electric SUV has 48,000 pre-orders
Land Rover Range Rover Velar SVAutobiography Dynamic Edition

Range Rover, the brand made famous for its British-styled, luxury, all-terrain SUVs, is keen to show it means business about going electric.

And, according to the most recent investor presentation by parent company JLR, that’s all because Range Rover fans are showing the way. Not only was demand for Range Rover’s hybrid vehicles up 29% in the last six months, but customers are buying hybrids “as a stepping stone towards battery electric vehicles,” the company says.

Read more
BYD’s cheap EVs might remain out of Canada too
BYD Han

With Chinese-made electric vehicles facing stiff tariffs in both Europe and America, a stirring question for EV drivers has started to arise: Can the race to make EVs more affordable continue if the world leader is kept out of the race?

China’s BYD, recognized as a global leader in terms of affordability, had to backtrack on plans to reach the U.S. market after the Biden administration in May imposed 100% tariffs on EVs made in China.

Read more
Tesla posts exaggerate self-driving capacity, safety regulators say
Beta of Tesla's FSD in a car.

The National Highway Traffic Safety Administration (NHTSA) is concerned that Tesla’s use of social media and its website makes false promises about the automaker’s full-self driving (FSD) software.
The warning dates back from May, but was made public in an email to Tesla released on November 8.
The NHTSA opened an investigation in October into 2.4 million Tesla vehicles equipped with the FSD software, following three reported collisions and a fatal crash. The investigation centers on FSD’s ability to perform in “relatively common” reduced visibility conditions, such as sun glare, fog, and airborne dust.
In these instances, it appears that “the driver may not be aware that he or she is responsible” to make appropriate operational selections, or “fully understand” the nuances of the system, NHTSA said.
Meanwhile, “Tesla’s X (Twitter) account has reposted or endorsed postings that exhibit disengaged driver behavior,” Gregory Magno, the NHTSA’s vehicle defects chief investigator, wrote to Tesla in an email.
The postings, which included reposted YouTube videos, may encourage viewers to see FSD-supervised as a “Robotaxi” instead of a partially automated, driver-assist system that requires “persistent attention and intermittent intervention by the driver,” Magno said.
In one of a number of Tesla posts on X, the social media platform owned by Tesla CEO Elon Musk, a driver was seen using FSD to reach a hospital while undergoing a heart attack. In another post, a driver said he had used FSD for a 50-minute ride home. Meanwhile, third-party comments on the posts promoted the advantages of using FSD while under the influence of alcohol or when tired, NHTSA said.
Tesla’s official website also promotes conflicting messaging on the capabilities of the FSD software, the regulator said.
NHTSA has requested that Tesla revisit its communications to ensure its messaging remains consistent with FSD’s approved instructions, namely that the software provides only a driver assist/support system requiring drivers to remain vigilant and maintain constant readiness to intervene in driving.
Tesla last month unveiled the Cybercab, an autonomous-driving EV with no steering wheel or pedals. The vehicle has been promoted as a robotaxi, a self-driving vehicle operated as part of a ride-paying service, such as the one already offered by Alphabet-owned Waymo.
But Tesla’s self-driving technology has remained under the scrutiny of regulators. FSD relies on multiple onboard cameras to feed machine-learning models that, in turn, help the car make decisions based on what it sees.
Meanwhile, Waymo’s technology relies on premapped roads, sensors, cameras, radar, and lidar (a laser-light radar), which might be very costly, but has met the approval of safety regulators.

Read more