Skip to main content

Google’s AlphaGo Zero AI quickly masters ancient board game with no human help

alphago zero
Image used with permission by copyright holder
Google shocked the world in 2016 when AlphaGo, an artificial intelligence program created specifically to play the ancient board game Go, defeated one of the game’s top competitors in a five-game match. Such a feat wasn’t predicted to occur for at least another decade, leaving tech types and laymen alike wondering just how intelligent AI has become.

A little over one year later, AlphaGo again competed in a high-profile match, this time against the world’s top Go player, a 19-year-old prodigy named Ke Jie. The machine shut the human out, three games to none. With these victories under its belt, Google announced in May that it would retire AlphaGo.

Recommended Videos

But Google’s AI group, DeepMind, has just unveiled a newer, shinier, smarter version of AlphaGo dubbed AlphaGo Zero, which has pushed beyond the capabilities of its predecessor by mastering the ancient board game without any help from humans. Equipped with just the rules of the game, AlphaGo Zero managed to learn Go from scratch, create its own knowledge along the way, and ultimately defeat its predecessor 100 games to zero.

Both the old and new AlphaGo learned through a process called reinforcement learning, which encourages good moves that are more likely to be rewarded with a win. However, the way DeepMind trained the systems differed, and that’s where AlphaGo Zero really shined.

To train the original AlphaGo, DeepMind researchers fed the system thousands of games that were played by amateur and professional human Go players. These games helped the system develop winning strategies and identify good and bad moves. AlphaGo Zero, on the other hand, only played by itself (albeit millions of time), making moves at random until it recognized strategies. The new system had no help from humans beyond its initial startup.

What’s truly astonishing about AlphaGo Zero’s self-schooling is that it went from chump to champ in just a few days. The system started off as a completely incompetent player. By the third day, after only playing against itself, the system was capable of defeating its predecessor. By day 40, DeepMind suggests the system became the greatest Go player ever.

Where the original AlphaGo was little more than an exceptionally talented board game player, the advances made by AlphaGo Zero — specifically it’s ability to teach itself from scratch — makes the system relevant to a wide range of real-world applications. The same principles that help AlphaGo Zero learn from just the rules could be applied to other rules-based task.

“For us, AlphaGo wasn’t just about winning the game of Go,” Demis Hassabis, CEO of DeepMind, told The Guardian. “It was also a big step for us towards building these general-purpose algorithms.”

DeepMind published a paper detailing the development of AlphaGo Zero in the journal Nature.

Dyllan Furness
Former Digital Trends Contributor
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Range Rover’s first electric SUV has 48,000 pre-orders
Land Rover Range Rover Velar SVAutobiography Dynamic Edition

Range Rover, the brand made famous for its British-styled, luxury, all-terrain SUVs, is keen to show it means business about going electric.

And, according to the most recent investor presentation by parent company JLR, that’s all because Range Rover fans are showing the way. Not only was demand for Range Rover’s hybrid vehicles up 29% in the last six months, but customers are buying hybrids “as a stepping stone towards battery electric vehicles,” the company says.

Read more
BYD’s cheap EVs might remain out of Canada too
BYD Han

With Chinese-made electric vehicles facing stiff tariffs in both Europe and America, a stirring question for EV drivers has started to arise: Can the race to make EVs more affordable continue if the world leader is kept out of the race?

China’s BYD, recognized as a global leader in terms of affordability, had to backtrack on plans to reach the U.S. market after the Biden administration in May imposed 100% tariffs on EVs made in China.

Read more
Tesla posts exaggerate self-driving capacity, safety regulators say
Beta of Tesla's FSD in a car.

The National Highway Traffic Safety Administration (NHTSA) is concerned that Tesla’s use of social media and its website makes false promises about the automaker’s full-self driving (FSD) software.
The warning dates back from May, but was made public in an email to Tesla released on November 8.
The NHTSA opened an investigation in October into 2.4 million Tesla vehicles equipped with the FSD software, following three reported collisions and a fatal crash. The investigation centers on FSD’s ability to perform in “relatively common” reduced visibility conditions, such as sun glare, fog, and airborne dust.
In these instances, it appears that “the driver may not be aware that he or she is responsible” to make appropriate operational selections, or “fully understand” the nuances of the system, NHTSA said.
Meanwhile, “Tesla’s X (Twitter) account has reposted or endorsed postings that exhibit disengaged driver behavior,” Gregory Magno, the NHTSA’s vehicle defects chief investigator, wrote to Tesla in an email.
The postings, which included reposted YouTube videos, may encourage viewers to see FSD-supervised as a “Robotaxi” instead of a partially automated, driver-assist system that requires “persistent attention and intermittent intervention by the driver,” Magno said.
In one of a number of Tesla posts on X, the social media platform owned by Tesla CEO Elon Musk, a driver was seen using FSD to reach a hospital while undergoing a heart attack. In another post, a driver said he had used FSD for a 50-minute ride home. Meanwhile, third-party comments on the posts promoted the advantages of using FSD while under the influence of alcohol or when tired, NHTSA said.
Tesla’s official website also promotes conflicting messaging on the capabilities of the FSD software, the regulator said.
NHTSA has requested that Tesla revisit its communications to ensure its messaging remains consistent with FSD’s approved instructions, namely that the software provides only a driver assist/support system requiring drivers to remain vigilant and maintain constant readiness to intervene in driving.
Tesla last month unveiled the Cybercab, an autonomous-driving EV with no steering wheel or pedals. The vehicle has been promoted as a robotaxi, a self-driving vehicle operated as part of a ride-paying service, such as the one already offered by Alphabet-owned Waymo.
But Tesla’s self-driving technology has remained under the scrutiny of regulators. FSD relies on multiple onboard cameras to feed machine-learning models that, in turn, help the car make decisions based on what it sees.
Meanwhile, Waymo’s technology relies on premapped roads, sensors, cameras, radar, and lidar (a laser-light radar), which might be very costly, but has met the approval of safety regulators.

Read more