Skip to main content

The best accidental inventions prove sometimes it’s better not to try

best accidental inventions
Ryan Neely
best accidental inventions

You don’t have to follow Nihilist Arby’s to realize that nothing matters and life on this planet is the result of a series of accidents. Somewhere in the midst of all of the Big Bang-ing and cosmic caroming, we hit the Goldilocks sweet spot and the primordial soup goop was just right. As a species, we’ve commonly used biomimicry to essentially “borrow” from Mother Nature and this vast test bed of evolutionary trial and error. So it should come as no surprise that some of the most invaluable technological discoveries can also be chalked up to mere happenstance. After all, an uncovered petri dish next to an open window may have given us the most significant medical discovery of the 20th century — penicillin.

Some people may be familiar with the story behind the first ink jet printer or perhaps even the first inadvertent LSD trip, but even fewer may know the story behind seemingly omnipresent items like plastics or even the microwave oven. As the saying goes, necessity may be the mother of invention, but wonderful systematic hitches and all-out glitches have certainly played a part in many a eureka moment. The word “accident” entered the English language from the Latin verb “cadere,” meaning “to fall.” With that in mind, here are the best accidental inventions to seemingly fall right into our laps.

Ryan Neely
St. Jude Medical

The pacemaker

While today’s pacemakers may be smaller than the size of a vitamin and even function without internal batteries, this certainly hasn’t always been the case. In fact, around the mid-19th century, some early variants of the pacemaker were the size of a television and needed to be plugged in to function. Fortunately, we have Wilson Greatbatch to thank for helping set the stage for the first commercially viable implantable pacemaker as we know it.

In 1956, while testing equipment to better monitor cardiac acoustics, Greatbatch inadvertently plugged the wrong transistor into the device. This specific transistor — more than 100 times as powerful as the transistor he intended to use — produced a massive electrical pulse. As it turned out, this burst was similar to a natural cardiac rhythm. He spent the next two years fine-tuning his discovery, and in 1958 he presented a series of these units to surgeons at Buffalo’s Veterans Administration Hospital. The two scientists eventually used this early pacemaker and a pair of Texas Instrument transistors to successfully control the heartbeat of a dog.

microwave
Image used with permission by copyright holder

Microwave ovens

As one could probably assume by simply beholding the veritable smorgasbord of fast-food chains peppering this truly blessed landscape, a lot of Americans don’t cook. In fact, per the latest research, most Americans specifically “hate” cooking, and who could blame them? Why carefully prepare an ornate meal passed down lovingly from generation to generation when we can just as easily zap a Cup Noodles or cheeseburger Hot Pocket and numbly force the nutrient-less hunk o’ cancer down our throats?

Nonetheless, thanks to the godsend Percy Spencer, we have this truly magical box. In 1946, the Raytheon engineer was testing a military-grade magnetron and not too long afterward, his snack of choice had melted in his pocket. (Fun fact: While most people said that pocket snack was a chocolate bar, according to Spencer’s grandson, it was actually a peanut cluster.)

One year after this incident, the first commercial microwave, the Radarange, hit the shelves with a price tag of a cool $2,000. Less than 20 years later, more than 1 million microwaves were sold annually and the rest, as the say, is history. The next time you’re alone in your apartment eating that pizzadilla to Seinfeld reruns, remember to pour out a little Tapatio for your boy Percy.

UC Berkeley/Ryan Neely

Neural dust

While neural dust may not be as much of a household name as some of the other accidental discoveries on this list, it may hold the most promise moving toward the next century. Jamie Link, a graduate student at the University of California, San Diego, won the $50,000 grand prize in the Collegiate Inventors Competition for discovering this so-called “smart dust.”

While attempting to produce thin multilayered film on a crystalline substrate, the silicon chip itself accidentally broke. Link then noticed that each of these pieces retained properties of the original chip. Researchers now propose this neural dust could be used in everything from more acute drug delivery methods to treating paralysis.

Researchers at the University of California, Berkeley, are using this technology to study and manipulate the human brain. This team is using a “sprinkling” of these dust-sized electronic sensors in the cortex, and then “interrogating” these neural dust via ultrasound. This elaborate system of sensors and circuits is then used to convert high-frequency sound waves into electrical signals and vice versa. This so-called tetherless system exists as a far less invasive means of monitoring and manipulating neural activity than the so-called BrainGate computer interfaces that literally use a series of cables and sensors implanted through the skull itself.

Researchers at Brown University successfully used the BrainGate method to allow a paralyzed woman to use a series of robotic limbs to lift and sip a cup of coffee using only her brainwaves. Similarly, three other paralyzed individuals have used the BrainGate brain computer interface to type on a screen, and one of these participants was even able to accurately type around 39 characters per minute. Down the road, this neural dust could be used to eliminate the need for this bulky and invasive implant system altogether.

UC Berkeley/Ryan Neely
plastic bottles
Image used with permission by copyright holder

Plastics

Plastic is so ubiquitous in our day-to-day lives at this point in time that most of could hardly imagine a world without it. But the petroleum byproduct has only been around for about 100 years. At the beginning of the 20th century, the resin shellac was widely used to insulate the newfangled electronics of the day. There was one small problem: Shellac is woefully labor-intensive to collect.

Shellac was originally harvested by scraping hardened East Asian lac beetle dumps from trees. Belgian chemist Leo Baekeland set out to discover a cheaper and more efficient method for insulating wiring, without the need for manually harvesting the dumps. While impregnating wood with a phenol and formaldehyde mixture, he eventually stumbled upon what would be the first synthetic plastic, now commonly known as Bakelite. This product showed a particularly high resistance to heat, chemical action, and electricity, making it exceedingly useful for the burgeoning electric and automotive industries of the day.

Today, plastics have become more bane than boon. The petroleum byproduct is so common on our planet, it is estimated that by 2050 there will be more hunks of plastic in our “garbage patch“-riddled oceans than actual living aquatic organisms.

Wikimedia Commons

X-rays

In 1895, German physicist Wilhelm Conrad Röntgen was testing a series of cathodes at his laboratory in Wurzburg to see whether these rays could pass through glass. During this process, he detected a faint green fluorescence radiating from a chemically coated screen. This type of radiation would later be named “X-ray” due to its unknown origin. The following week, Röntgen used this process to X-ray his wife’s hand. (This first X-ray image swept through the scientific community and would eventually both inspire and terrify Thomas Edison.) Just two weeks after Röntgen’s announcement, Friedrich Otto Walkhoff would take the world’s first dental radiograph.

Dallon Adams
Former Digital Trends Contributor
Dallon Adams is a graduate of the University of Louisville and currently lives in Portland, OR. In his free time, Dallon…
This bracelet helps you fall asleep faster and sleep longer
woman-in-bed-wearing-twilight-apollo-on-ankle

This content was produced in partnership with Apollo Neuroscience.
Have you been struggling to get the recommended seven hours of sleep? It's always frustrating when you get in bed at a reasonable time, then toss and turn for a hours before you actually sleep. The quality of that sleep is important too. If you're waking up multiple times during the night, you're likely not getting the quality REM cycle sleep that truly rejuvenates your body. If traditional remedies like herbal teas and noise machines just aren't helping, maybe it's time to try a modern solution. Enter the Apollo wearable.

Now we understand being a little skeptical. How can a bracelet on your wrist or ankle affect your sleep patterns? Certainly the answer to a better night's sleep can't be so simple. We considered these same things when we first heard of it. We'll dive deeper into the science behind the Apollo wearable, but suffice it to say that many people have experienced deeper, uninterrupted sleep while wearing one.
A non-conventional approach to better sleep

Read more
The 11 best Father’s Day deals that you can get for Sunday
Data from a workout showing on the screen of the Apple Watch Series 8.

Father's Day is fast approaching and there's still time to buy your beloved Dad a sweet new device to show him how much you love him. That's why we've rounded up the ten best Father's Day tech deals going on right now. There's something for most budgets here, including if you're able to spend a lot on your loved one. Read on while we take you through the highlights and remember to order fast so you don't miss out on the big day.
Samsung Galaxy Tab A8 -- $200, was $230

While it's the Plus version of the Samsung Galaxy Tab A8 that features in our look at the best tablets, the standard variety is still worth checking out. Saving your Dad the need to dig out their laptop or squint at a small phone screen, the Samsung Galaxy Tab A8 offers a large 10.5-inch LCD display and all the useful features you would expect. 128GB of storage means plenty of room for all your Dad's favorite apps as well as games too. A long-lasting battery and fast charging save him the need for a power source too often too.

Read more
The Apollo wearable is proven to help you sleep better (and it’s on sale)
Apollo wearable worn during sleep in bed.

This content was produced in partnership with Apollo Neuro.
Stress, anxiety, and insomnia are all concerning things that just about everyone struggles with at one time or another. Maybe you can sleep, fending off insomnia, but you lack quality sleep and don’t feel rested in the morning. Or, maybe when it’s time to kick back and relax, you just can’t find a way to do so. There are many solutions for these issues, some work, and others don’t, but one unlikely area of support can be found in a modern, smart wearable.

Medicine is the obvious choice, but not everyone prefers to go that route. There is an answer in modern technology or rather a modern wearable device. One such device is the Apollo wearable, which improves sleep and stress relief via touch therapy. According to Apollo Neuro, the company behind the device, which is worn on your ankle, wrist or clipped to your clothing, it sends out waves of vibrations to help your body relax and reduce feelings of stress. It's an interesting new approach to a common problem that has typically been resolved via medicine, therapy, or other more invasive and time-consuming techniques. The way it utilizes those vibrations, uniquely placed and administered, to create a sense of peace, makes us ask, can it really cure what ails us? We’ll dig a little deeper into how it achieves what it does and what methods it’s using to make you feel better.

Read more