Skip to main content

Remains of shallow, briny pools provide further evidence of liquid water on Mars

A Guide to Gale Crater

As the Curiosity rover explores Mars’ Gale Crater, the data it collects tells us more about the history of the planet and in particular about whether liquid water once existed there. Using data collected by Curiosity, a new study has examined the geology of the crater to learn more about the briny ponds which may once have dotted the planet’s surface.

Recommended Videos

“We went to Gale Crater because it preserves this unique record of a changing Mars,” William Rapin, Caltech researcher and lead author of the study, explained in a statement. “Understanding when and how the planet’s climate started evolving is a piece of another puzzle: When and how long was Mars capable of supporting microbial life at the surface?”

Please enable Javascript to view this content

By looking at the salts present in rocks in an area of the crater called Sutton Island, the scientists could build up a picture of the environment through time. They already knew that the area went through drier periods, as the mud in a region called Old Soaker was cracked. The cracks form as the mud dries out.

The new evidence shows there were wet periods too though. The presence of minerals salts mixed with sediment suggests that shallow ponds once formed there, before drying to leave the salts behind. The ponds would have been briny due to the concentrated salts.

Different sulfate elements found in Mars’ Gale Crater: (a) magnesium sulfate-enriched lithology; (b) calcium sulfate enrichments; (c) euhedral white crystals and heterogeneous calcium sulfate and magnesium sulfate enrichments; (d) areas with calcium sulfate enrichments (red) and without (blue); (e, f) close-up images of a mudstone and a sandstone enriched in calcium sulfate; (g) close-up image of bedrock. Rapin et al, doi: 10.1038/s41561-019-0458-8.

To understand more about the formation of these briny lakes, scientists turned to an environment closer to home: “Given that Earth and Mars were similar in their early days, Sutton Island might have resembled saline lakes on South America’s Altiplano,” Dr. Rapin said.

“Streams and rivers flowing from mountain ranges into this arid, high-altitude plateau lead to closed basins similar to Mars’ ancient Gale Crater… During drier periods, the Altiplano lakes become shallower, and some can dry out completely. The fact that they’re vegetation-free even makes them look a little like Mars.”

The research is published in the journal Nature Geoscience.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Perseverance rover finds evidence of an ancient river on Mars
NASA’s Perseverance Mars rover captured this mosaic of a hill nicknamed “Pinestand.” Scientists think the tall sedimentary layers stacked on top of one another here could have been formed by a deep, fast-moving river.

The Perseverance rover has been exploring Mars's Jezero Crater as part of its mission to search for evidence of ancient life on Mars. The history of water is key in the search for life, and it is currently thought that Mars lost its water around 4 million years ago. Now, the rover has identified evidence of what was once one of the deepest and fast-flowing rivers yet discovered on the planet.

The rover captured a series of hundreds of images using its Mastcam-Z instrument, which were put together into this mosaic showing a hill structure called Pinestand. In the image, you can see the many layers left behind by the flowing river, which were formed by deposits of sediment.

Read more
Mars Curiosity rover finds evidence of water where it was expected to be dry
Curiosity Rover

The key to understanding whether Mars was ever habitable is water. For life as we know it to thrive, liquid water needs to be present -- and we know that even though it is now dry, there was once liquid water on the surface of Mars. However, the history of water on Mars is complex, and scientists are still debating exactly how long water was present there and when the planet dried up.

And it's about to get more complex. Recently, the Curiosity rover has made an intriguing discovery suggesting that water was once present in an area that scientists had thought would be dry.

Read more
Curiosity rover investigates salty region of Mars for clues of life
NASA's Curiosity Mars rover used its Mast Camera, or Mastcam, to capture this panorama of a hill nicknamed Bolívar and adjacent sand ridges on Aug. 23, the 3,572nd Martian day, or sol, of the mission.

When it comes to hunting for evidence of ancient life on Mars, some key features that scientists want to explore are areas with high levels of sulfate minerals. These salts form in the presence of water, so even though Mars is dry today, finding these minerals now indicates that there was once water in the region. And areas of water are places where life is most likely to have developed. So it's an exciting time when a Mars rover reaches an area high in sulfates, and the Curiosity rover recently arrived at one such location on Mount Sharp in the Gale Crater.

The sulfates had been identified from orbit by the Mars Reconnaissance Orbiter years ago as a key target for Curiosity to explore, and the rover has already identified a variety of rock types and salt minerals in the area including magnesium sulfate, calcium sulfate, and sodium chloride or table salt.

Read more