Skip to main content

Blockchain is overhyped, but it’s also perfect for California’s drought problem

Will Hawkins/Digital Trends

California has a water problem.

The state is an agricultural powerhouse, producing over a third of the United States’ vegetables and generating over $50 billion in a year, but its vast and varied output requires a similarly colossal amount of water.

For decades, farmers and businesses have pumped groundwater out of California’s aquifers, the permeable layers of rock that hold water underground, and the results have been frightening. As aquifers drain faster than rain can replenish them, the ground actually sinks, a phenomenon called “subsidence.” In areas where building and roads rest atop the ground, this can cause damage.

“California is huge for American agriculture,” Alex Johnson, Freshwater Fund Director for The Freshwater Trust, told Digital Trends. “But it’s heavily groundwater dependent, and there are some basins in the central valley that have been so depleted over the last couple decades that they are 20 feet lower in elevation because those aquifers have been drained and all the ground is settling.”

The Freshwater Trust

As the aquifers sink, they don’t merely pose a risk to infrastructure on the ground. Rock and soil collapse together, removing the space where water could once accumulate. This could be catastrophic, as according to the California Department of Water Resources, in average year groundwater accounts for 38 percent of the state’s water supply; in dry years that number can jump beyond 46 percent.

If California is going to prevent further depletion of aquifers and survive droughts like the one that afflicted it from 2011 to 2017, the state will need to manage its groundwater usage. In the central valley, a group of organizations is working on a project that could stem the tide by combining two technologies: the internet of things (IoT) and Blockchain.

A project born in the cradle of humanity

The first big challenge was figuring out how to monitor groundwater levels across the state. Luckily, this is an issue that people in other regions of the globe have been grappling with for years, and have already developed solutions for.

“We’re primarily doing this today in East Africa,” says Evan Thomas, CEO of SweetSense, a company that uses satellite-connected sensors to monitor rural water supplies. “There’s actually 30 percent less rainfall over East Africa over the past every year for 30 years,” he explains, “so drought is basically every year now, instead of every ten or 20 years, and the consequences of drought are really severe. 250,000 people died in 2011 because of the drought in Ethiopia and Kenya, and almost ten million people were impacted.”

Stephanie Tatge and Nathan B Wangusi The Freshwater Trust

In Kenya, SweetSense partnered with IBM Research, and with support from the United States Agency for International Development (USAID), they built a system to use IoT sensors to “monitor groundwater use and demand, correlate that to rainfall surface water availability, and then also, most importantly, use that data to identify when a water pump fails so that we can go out and get it fixed and make sure that people have access to water year round.”

The use of IoT is exciting: Here is a technology many people associate first with kitchen appliances and Alexa speakers, being used to save lives from drought. IoT, the internet of things, refers, broadly, to the ability of machines to communicate with each other.

Here is a technology many people associate first with appliances and Alexa speakers, being used to save lives from drought.

Imagine the modern, techie apartment: You might have a smart home hub that, when the clock strikes 7 a.m., tells your smart speaker to play an alarm, your coffee machine to start brewing a pot, your TV to turn on and change the channel to the morning news. If the temperature outside is below a certain threshold, your smart thermostat cranks up the heat. Although you may have programmed these instructions initially, the machines can “talk” to each other and carry out instructions without a human micromanaging them.

Importantly, devices can communicate with each other without syncing up with the wider internet, and this is crucial for SweetSense’s work in Africa.

“The reason that it’s IoT is we’re completely off-grid,” Thomas explains. “There’s no cellular service, there’s no power, there’s no utility hookups, so we have a self-contained, solar-powered sensor that’s attached to these pumps that can monitor water supply and connect it over satellite networks.”

The sensors can fit in a person’s palm, and are powered by a “2-watt solar panel which is the size of a small paperback book.”

A shared resource requires shared information

Being able to accurately measure groundwater use is a crucial step, but it’s not enough to simply have accurate instruments. Groundwater is a uniquely complicated resource to manage. It all lies underground, out of sight, and because of how crucial it is to a variety of industries, everybody wants their sip at the fountain.

“I think there’s an inherent difficulty in water management and natural resource management where it’s hard to track who does what and keep track of that over time,” Johnson says. “There’s not a lot of trust between users, especially between users and the government or local management agencies to other entities wanting the same resource.”

The Freshwater Trust

Groundwater usage is an excellent example of the tragedy of the commons, the idea that presented with a shared resource, individuals will decide to maximize their own use of it, despite the fact that, if everybody does so, it could deplete the resource and doom the group.

Management of a shared resource like water, one that people feel naturally entitled to, requires not just the survival of the group depends on everyone rationing their use. It requires trust. Each individual wants to know that everyone else is playing by the same rules.

“Water is a shared resource,” says Nathan Wangusi, Technical Lead for Water at IBM Research Africa, “which means if we are extracting from the same aquifer we need to have conditions about how much we’re extracting, what rate we’re extracting at … so that idea of consensus is very important.”

A market-based approach

Wangusi and his team work in Kenya, in a region he describes as “sparsely populated” and “largely pastoral … heavily dependent on groundwater.” It’s also a region in which it’s hard to deploy many technological solutions. Wangusi and his team decided to focus on how to monetize water rights.

“You think of any other natural resource, like minerals, land, access to ability to pollute,” Wangusi explains, “you get those rights through some permit … if you have a carbon credit, you get some permit to put a certain amount of carbon into the environment.”

Likewise, if you own land, you can grow crops and have a right to sell those crops. If you own a mine, you can extract minerals from it and sell them. Groundwater is trickier though.

“What’s different about water rights, more so than other natural resource rights, is that you cannot convert water rights directly … into a commercial instrument.”

Wangusi and his team settled on the idea of groundwater credits. A credit provides the owner the right to extract a set amount of water from the ground, and if the owner doesn’t want to make use of that right themselves, they can “convert them into commercial instruments that you can trade in an open market.”

Markets are about trust, however. The people involved need to trust that the product they are buying — in this case the right to extract groundwater — is valid, and they need to trust that nobody else is gaming the system. Why would a farmer restrict themselves to only the water they can afford to buy a permit for if they suspect their neighbor is pumping water with reckless abandon? Everyone needs to have access to that information, and know that the information is trustworthy.

A system that everyone can trust

“The technology that is designed to support consensus and democratized access to information,” Wangusi says, “is by definition Blockchain, because you have this idea of a ledger that is immutable, and then you have the idea of a smart contract that can move transactions within that Blockchain network.”

The Freshwater Trust

Blockchain is the technology that underlies cryptocurrencies like Bitcoin, but it has a lot of potential for other applications. Put simply, a Blockchain is a decentralized ledger, shared among everybody who wants access to it.

When any number of parties make a transaction or other deal (say, registering a “smart contract”) on the Blockchain, the other parties on the network verify it and secure its place in the record. The information is available to all users, and nobody can alter it after the fact, because the data has to line up with the copies everyone else has.

SweetSense’s sensors can accurately track the amount of groundwater pulled up from any pump in the system, and convey that information to IBM’s Blockchain via satellites, so the data flows even in remote areas. On the Blockchain, users can buy and sell their water credits, even registering smart contracts to automatically buy or sell when the price is right, and everyone can see which pumps are functional or not, where water is being pumped, and so on.

From Kenya to California

The system, developed in Africa, is a boon for the pastoral communities that depend on groundwater there. To the Freshwater Trust, it also appeared to have a lot of potential for California. Although people might not immediately link Kenya and California in their minds, both regions rely on agriculture, and both rely on groundwater.

Thomas had worked with the Freshwater Trust in the past, and they saw a chance to collaborate.

“Because TFT was trying to figure out how to help farmers actually monitor water and how to help farmers comply with the Groundwater Sustainability Act,” Thomas says, “and most importantly, how to help them in a way that eases the pain of new regulations and creates market incentives for participating.”

The Freshwater Trust

The creators of the project were excited by the prospect of what they call “reverse technology transfer,” of a system engineered in the developing world coming to help California, the heart of the tech world.

“It’s easy, I think, in American culture, to feel like we’re the best,” Johnson says. “Because we’ve been told that, or we’ve told ourselves that a lot. There are lots of places where innovation is happening, and I think the speed of technology has democratized where some of those really interesting technological advancements come from.”

Given California’s central role in the tech industry, there is a bit of irony there, the great exporter of innovation drawing on technology from a far-away land.

“California is pretty techy in a very specific sense,” Johnson says, “and that generally isn’t around agriculture. So I think there’s probably lots of areas where the developing world has teachings and has innovations that can teach the developed world that.”

Humanity’s back may not be pressed against the wall yet, but we can feel it looming.

What this IoT/Blockchain system offers is a way of regulating groundwater usage that is transparent and incorruptible, which is helpful given that farmers, whether in Kenya or California, can be wary of government mandates.

“If we can create a system that is credible, that is immutable, and shows that overall that resource, month after month, year after year, is being managed sustainably, but gives the users the privacy and the security that they need to actually use that system,” Johnson says, “now we’re talking.”

“The legislation is going to force demand for these new types of systems,” he adds, and so organizations like the Freshwater Trust are trying “to figure stuff out before everybody’s back is against the wall …”

The Earth is getting parched

Humanity’s back may not be pressed against the wall yet, but we can feel it looming.

The Freshwater Trust

“We don’t have water available year-round, really anywhere in the world, and it’s becoming a crisis,” says Thomas. “Drought is exacerbating this issue, demand is exacerbating this issue, and we need to make sure that water is available where it needs to be and when it needs to be. And we aren’t going to be able to do that the old way,” he adds. “We’re not just going to build new dams again, or steal all of the water out of the mountains. We need to be able to manage the water where it is.”

Drought doesn’t just hurt agriculture. A recent statement from the USDA Forest Service states that 18 million trees have died in California since 2017, bringing the total dead since 2010 to 149 million. Those husks stretch across millions of acres, a sea of kindling waiting for a spark. California’s prolonged drought has coincided with an increase in wildfires, including the 2018 Camp Fire, the deadliest wildfire in California’s history.

It’s going to take robust public policy and technological innovation to stave off disaster, and California is leveraging both.

“We as humans have access to almost godlike technology right now,” Johnson says. “Let’s have a sense of urgency and try things and apply some of these technologies where they are most needed.”

Will Nicol
Former Digital Trends Contributor
Will Nicol is a Senior Writer at Digital Trends. He covers a variety of subjects, particularly emerging technologies, movies…
Juiced Bikes sold at auction for $1.2 million, report says
The Juiced Bikes Scorpion X2 adds more power, upgraded tires, and an improved battery to the popular moped style e-bike.

Juiced Bikes, the San Diego-based maker of e-bikes, has been sold on an auction website for $1,225,000, according to a report from Electrek.Digital Trends recently reported how the company was showing signs of being on the brink of bankruptcy. The company and its executives had remained silent, while customer inquiries went unanswered and its website showed all products were out of stock. In addition, there were numerous reports of layoffs at the company.Yet, the most convincing sign was that the company’s assets appeared as listed for sale on an auction website used by companies that go out of business.Now, it appears that Juiced Bikes’ assets, including a dozen patents, multiple URLs, and the company’s inventory in both the U.S. and China, have been sold at auction, according to the report. It is likely that the buyer, who remains unknown, can capitalize on the brand and the overall value of the 15-year old company. Founded in 2009 by Tora Harris, a U.S. high-jump Olympian, Juiced Bikes was one of the early pioneers of the direct-to-consumer e-bike brands in the U.S. market.
The company had quickly built a reputation for the versatility of its e-bikes and the durability of their batteries. Over the years, the popularity of models such as the CrossCurrent, HyperScrambler, and RipCurrent only bolstered the brand’s status.Last year, Digital Trends named the Juiced Bikes Scorpion X2 as the best moped-style e-bike for 2023, citing its versatility, rich feature set, and performance.Juiced Bikes’ getting sold quickly might be a sign of what consulting firm Houlihan Lokey says is a recovery in the North American e-bike market.
The industry has had a roller-coaster ride during and after the COVID-19 pandemic: A huge spike in demand for e-bikes had combined with disrupted supply chains to create a supply/demand mismatch of “historic proportions," Houlihan Lokey said.

Read more
Rivian gets Knight Rider spooky for Halloween
Michael Knight sitting on the hood of his car KITT in a scene from Knight Rider.

Rivian vehicles are known for giving drivers the chance to take the party on the road, whether it’s stowing a travel kitchen onboard or using its elaborate software systems to spice things up.With Halloween just around the corner, the automaker based in Plymouth, Michigan, is pulling out some treats from its bag of tricks: Rivian owners are getting a number of options to turn their vehicles into traditional spooky or full-on sci-fi entertainment hubs.A software update available on the Rivian Mobile App until November 4 provides Car Costumes, which take over the vehicle’s screen, lighting, and sound systems while in park to transform it into three different cars.Nostalgic fans of the Knight Rider TV series will be pleased with the option to turn their Rivians into the famous K.I.T.T. crime-fighting car. After choosing the option on the app, the car’s interior display system features K.I.T.T.’s diagnostics on screen while playing the original show intro music. Here's an extra treat for Rivian Gen 2 owners: The exterior light bar will feature K.I.T.T.’s iconic beaming red light while playing its scanner sound effect.No-less nostalgic fans of Back to the Future movies will also get their treat with a chance to turn their vehicle into the DeLorean Time Machine. With this option, the screen turns into the classic time-traveling interface while the audio system plays the movie’s music and acceleration sound effects. Once again, Rivian Gen 2 owners get an extra treat. Hitting the key 88 mph button will engage the car’s lighting and sound effects in the front and back of the car to whizz you through the sound barrier.For a more traditional spooky time, you can opt for the Haunted Rivian car costume, featuring eight different sound effects and three different color themes. Static and ghosts will take over your interior display.Rivian Gen 1 owners get a green animation on the outside of the vehicle. Gen 2 owners can turn the exterior light bar into whichever color option they find most frightful.

Read more
The Nissan Rogue is joining the plug-in hybrid club in 2025
nissan rogue hybrid 2025 2024

It might have taken a while, and slumping sales of its most popular SUV, but Nissan has finally taken the step to offer hybrid vehicles in the U.S. The Japanese automaker will add a plug-in hybrid (PHEV) powertrain to the 2026 Rogue compact SUV, which should be available stateside sometime next year, Nissan Americas chief planning officer Ponz Pandikuthira told Automotive News.A plug-in hybrid electric vehicle (PHEV) typically runs on electric power until its battery is almost depleted, at which point it automatically switches over to using a gasoline-powered internal combustion engine. The battery can be recharged conventionally from the outside or through regenerative braking.
While Nissan has been offering popular fully electric vehicles (EVs) such as the Leaf and the Ariya for years, it has surprised many by not joining the hybrid bandwagon, especially for the Rogue. Competitors such as the Toyota RAV4 and the Honda CR-V, which do provide the part-fuel, part-electric power capacity, have seen their sales surging. Meanwhile, sales of the Rogue have slumped this year.
That’s why Nissan is partnering with Mitsubishi to start offering its first-ever electrically assisted car in the U.S. next year.
According to the Automotive News report, the Rogue will be outfitted with a similar powertrain found in the Mitsubishi Outlander. In that model, a 2.4-liter gas engine powers the front wheels, while two electric motors create an all-wheel drive system that can either work on its own or in conjunction with the gas engine. As the Outlander is able to deliver 248 horsepower, that would make the Rogue PHEV more powerful than the existing model’s 201 hp. The Outlander is also rated for 38 miles of electric driving by the EPA.
In addition, Nissan is planning to bring its non-plug-in, e-Power series hybrid technology to the U.S. in 2026. This technology, already available outside the U.S., also uses electric motors to power the wheels while using the gas engine to charge the battery.

Read more