Skip to main content

Drone and rover tag teams could help solve the world’s deadly land mine problem

Roughly 20,000 people are maimed or killed each year due to land mines; the vast majority being civilians in parts of the world subject to ongoing conflict. Could a tag team of autonomous robots help solve the problem? That’s certainly what a team of roboticists from Worcester Polytechnic Institute in Massachusetts are hoping. They have spent the past half-decade developing an autonomous robot and sandbag-dropping drone which work together to seek and destroy potentially deadly land mines. And they’re almost ready for prime time.

Recommended Videos

As I’ve written before, collaborative robots are the future. Getting two (or potentially even more) different types of robot to work together means being able to combine the unique abilities of each and transform them into a cohesive solution that’s more than the sum of its parts. Have a slow, but steady rover which could methodologically sweep an area for mines using a metal detector, but has no way of getting rid of them? Have a drone with limited battery life and flight time which could be used to destroy mines by dropping something from above, while staying out of harm’s way? Get them talking to each other and suddenly you have a compelling partnership.

Robots working together

“It was always envisioned that [this project would feature] two different elements working together to solve the problem,” Craig Putnam, Senior Instructor in Robotics Engineering at Worcester Polytechnic Institute, told Digital Trends.

Well, kind of. In fact, the first iteration of the project — which dates back to 2014 — focused exclusively on the drone hardware. That year, WPI researchers set out to see if they could get a heavy lift DJI drone to autonomously navigate to a certain location, identify a makeshift marker on the ground using computer vision, and then release a payload. Aware of how much force it took to trigger a land mine and the ensuing shrapnel cone caused by the explosion, the researchers carried out experiments to work out the best height from which to drop these sandbags.

The rover was, at this point, “notional,” Putnam admitted. It was imagined as a provider of coordinates for the drone to visit — but it existed only in the minds of the people working on the project. “We pretended that the rover was out there finding the mines and marking them,” Putnam said.

WPI

With the drone component working, however, the researchers began to wonder what would happen if they actually built the rover robot they had been picturing. That was two years ago. The time ever since then has been dedicated to doing exactly that.

The rover the team has created isn’t entirely a homebrew creation. It builds on the body of a Clearpath Husky A100 rover, but makes several important additions. These include a special arm that holds a metal detector and a paint marking system which indicates to the drone where it should be targeting. Should the robot detect a mine, it paints a square around the deadly object, and then send its GPS coordinates to the drone, via a base station.

Most importantly, the researchers developed custom software that allow the two robots to talk to one another and carry out localization. This system boasts navigation algorithms which the rover uses to establish its search area by breaking it into a series of small grids and autonomously navigating to each one in turn.

WPI

“Ideally, the end goal of this project would be that someone sets up the base station and then does not need to enter the field again; the drone and rover can both run autonomously,” said Matthew Schmitt, one of the students working on the project. (Others include Joseph Niski and Karl Ehlers.)

A human operator would be required only when it came time to reload the drone with the non-reusable sandbags it carries as payload. Currently, the prototype is capable of carrying five, although that number could potentially be expanded in the future.

An affordable solution

This isn’t the only technology Digital Trends has covered when it comes to destroying land mines. For instance, in the past I’ve written about a “mine-munching tank” which weighs 30 tons and can chew through 50 tons of soil every hour. Any land mines it uncovers are ground harmlessly to bits between twins sets of rotating steel teeth called sizers. Military forces around the world have their own answers to the problem; typically in the form of large, reinforced tanks or bulldozers which can effectively clear areas of mines.

These technologies frequently work exceptionally well. But as Craig Putnam pointed out, they’re frequently inaccessible to small communities. The goal, he said, was “to come up with a system that was as low cost as reasonably possible, so that it could be afforded by some remote village that has a problem with land mines in the area. Military solutions tend to be extremely expensive. [For that reason] we were looking for something that mostly used off-the-shelf components … Ziplock bags [full of sand] and that kind of thing are very inexpensive.”

WPI

Right now, the project is still in the research and development stages. “We’re not testing with real land mines,” he explained.

The project will continue through spring, at which point he hopes that they will be “able to demonstrate that the whole thing is working as a system.” After that, Putnam hopes to get the Army “interested in further development and further testing.”

Should all go to plan, some time soon this innovative tag team of robots may well find its way to those who need it the most. Will it solve the land mine problem on its own? Of course not. But it could certainly help out. And when it comes to technology being used as a force for good in the world, that’s more than enough.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Juiced Bikes offers 20% off on all e-bikes amid signs of bankruptcy
Juiced Bikes Scrambler ebike

A “20% off sitewide” banner on top of a company’s website should normally be cause for glee among customers. Except if you’re a fan of that company’s products and its executives remain silent amid mounting signs that said company might be on the brink of bankruptcy.That’s what’s happening with Juiced Bikes, the San Diego-based maker of e-bikes.According to numerous customer reports, Juiced Bikes has completely stopped responding to customer inquiries for some time, while its website is out of stock on all products. There are also numerous testimonies of layoffs at the company.Even more worrying signs are also piling up: The company’s assets, including its existing inventory of products, is appearing as listed for sale on an auction website used by companies that go out of business.In addition, a court case has been filed in New York against parent company Juiced Inc. and Juiced Bike founder Tora Harris, according to Trellis, a state trial court legal research platform.Founded in 2009 by Harris, a U.S. high-jump Olympian, Juiced Bikes was one of the early pioneers of the direct-to-consumer e-bike brands in the U.S. market.The company’s e-bikes developed a loyal fandom through the years. Last year, Digital Trends named the Juiced Bikes Scorpion X2 as the best moped-style e-bike for 2023, citing its versatility, rich feature set, and performance.The company has so far stayed silent amid all the reports. But should its bankruptcy be confirmed, it could legitimately be attributed to the post-pandemic whiplash experienced by the e-bike industry over the past few years. The Covid-19 pandemic had led to a huge spike in demand for e-bikes just as supply chains became heavily constrained. This led to a ramp-up of e-bike production to match the high demand. But when consumer demand dropped after the pandemic, e-bike makers were left with large stock surpluses.The good news is that the downturn phase might soon be over just as the industry is experiencing a wave of mergers and acquisitions, according to a report by Houlihan Lokey.This may mean that even if Juiced Bikes is indeed going under, the brand and its products might find a buyer and show up again on streets and trails.

Read more
Volkswagen plans 8 new affordable EVs by 2027, report says
volkswagen affordable evs 2027 id 2all

Back in the early 1970s, when soaring oil prices stifled consumer demand for gas-powered vehicles, Volkswagen took a bet on a battery system that would power its first-ever electric concept vehicle, the Elektro Bus.
Now that the German automaker is facing a huge slump in sales in Europe and China, it’s again turning to affordable electric vehicles to save the day.Volkswagen brand chief Thomas Schaefer told German media that the company plans to bring eight new affordable EVs to market by 2027."We have to produce our vehicles profitably and put them on the road at affordable prices," he is quoted as saying.
One of the models will be the ID.2all hatchback, the development of which is currently being expedited to 36 months from its previous 50-month schedule. Last year, VW unveiled the ID.2all concept, promising to give it a price tag of under 25,000 euros ($27,000) for its planned release in 2025.VW CEO Larry Blume has also hinted at a sub-$22,000 EV to be released after 2025.It’s unclear which models would reach U.S. shores. Last year, VW America said it planned to release an under-$35,000 EV in the U.S. by 2027.The price of batteries is one of the main hurdles to reduced EV’s production costs and lower sale prices. VW is developing its own unified battery cell in several European plants, as well as one plant in Ontario, Canada.But in order for would-be U.S. buyers to obtain the Inflation Reduction Act's $7,500 tax credit on the purchase of an EV, the vehicle and its components, including the battery, must be produced at least in part domestically.VW already has a plant in Chattanooga, Tennesse, and is planning a new plant in South Carolina. But it’s unclear whether its new unified battery cells would be built or assembled there.

Read more
Nissan launches charging network, gives Ariya access to Tesla SuperChargers
nissan charging ariya superchargers at station

Nissan just launched a charging network that gives owners of its EVs access to 90,000 charging stations on the Electrify America, Shell Recharge, ChargePoint and EVgo networks, all via the MyNissan app.It doesn’t stop there: Later this year, Nissan Ariya vehicles will be getting a North American Charging Standard (NACS) adapter, also known as the Tesla plug. And in 2025, Nissan will be offering electric vehicles (EVs) with a NACS port, giving access to Tesla’s SuperCharger network in the U.S. and Canada.Starting in November, Nissan EV drivers can use their MyNissan app to find charging stations, see charger availability in real time, and pay for charging with a payment method set up in the app.The Nissan Leaf, however, won’t have access to the functionality since the EV’s charging connector is not compatible. Leaf owners can still find charging stations through the NissanConnectEV and Services app.Meanwhile, the Nissan Ariya, and most EVs sold in the U.S., have a Combined Charging System Combo 1 (CCS1) port, which allows access to the Tesla SuperCharger network via an adapter.Nissan is joining the ever-growing list of automakers to adopt NACS. With adapters, EVs made by General Motors, Ford, Rivian, Honda and Volvo can already access the SuperCharger network. Kia, Hyundai, Toyota, BMW, Volkswagen, and Jaguar have also signed agreements to allow access in 2025.
Nissan has not revealed whether the adapter for the Ariya will be free or come at a cost. Some companies, such as Ford, Rivian and Kia, have provided adapters for free.
With its new Nissan Energy Charge Network and access to NACS, Nissan is pretty much covering all the bases for its EV drivers in need of charging up. ChargePoint has the largest EV charging network in the U.S., with over 38,500 stations and 70,000 charging ports at the end of July. Tesla's charging network is the second largest, though not all of its charging stations are part of the SuperCharger network.

Read more