Skip to main content

Biologists have successfully bred genetically engineered mosquitoes that can't carry malaria

flashing light mosquitoes malaria tiger mosquito
Image used with permission by copyright holder
Mosquito-borne malaria is a major problem, especially in Africa, Latin America, and other tropical parts of the world. The disease is caused by a parasite known as Plasmodium that resides within the mosquito and is transferred to humans when they are bitten by the blood-sucking insect. One way to combat this disease is to genetically engineer a mosquito population to reject the Plasmodium parasite. If the mosquitos can’t carry the Plasmodium parasite, then they can’t infect humans with malaria when they bite. This strategy of building a resistant community of mosquitos is sound in theory, but in real world tests only about 50 percent of the offspring insects will acquire the resistance from its parents. A new paper published in the Proceedings of the National Academy of Sciences ups this inheritance percentage to almost 100 percent using a controversial new technique called “gene driving.”

In a nutshell, gene driving is a method of manipulating DNA that ensures a gene is passed from a parent to its progeny at a rate as close as possible to 100 percent. To achieve this feat, scientists use the genome editing CRISPR–Cas9 system, which allows the researchers to target a specific area on the DNA for cutting and insertion of a mutated gene. This mutation is then transferred from one chromosome to another, ensuring all offspring inherit at least one copy of the modified gene. Because all offspring get a copy of the mutation, the modified gene then can be transmitted very quickly through a population of animals in the wild. As you can imagine, the technique is causing is the subject of much controversy among scientists. Not only does it override the natural process of evolution by quickly altering an population, these rapid changes can also produce unforeseen side effects on the ecosystem as a whole.

Recommended Videos

Earlier this year, developmental biologists Ethan Bier, Valentino Gantz, and their team from University of California, San Diego successfully engineered a gene drive in fruit flies. They then contacted Anthony James, a molecular biologist at the University of California, Irvine to see if their technique would apply to his research with malaria and mosquitos. Working with Bier and Gantz, James inserted two genes into a mosquito that would give the insect an innate resistance to the Plasmodium parasite. A follow-up study showed that the modified genes were passed to 99 percent of the mosquito’s offspring. The team confirmed the genes were being expressed in the progeny, but because their test was conducted in under laboratory conditions, they did not check to see if the genes conferred resistance as expected.

Please enable Javascript to view this content

Well aware of the potential to change an entire population of insects, James experimented on a non-native mosquito, ensuring the mutation would not spread like wildfire in the rare chance a test mosquito escaped from the lab. Though happy with the outcome of his experiments, James confirmed he is in no rush to move his experiment from the laboratory to the field. “It’s not going to go anywhere until the social science advances to the point where we can handle it,” James says. “We’re not about to do anything foolish.”

Kelly Hodgkins
Kelly's been writing online for ten years, working at Gizmodo, TUAW, and BGR among others. Living near the White Mountains of…
Dodge’s Charger EV muscles up to save the planet from ‘self-driving sleep pods’
dodges charger ev muscles up to save the planet from self driving sleep pods stellantis dodge daytona

Strange things are happening as the electric vehicle (EV) industry sits in limbo ahead of the incoming Trump administration’s plans to end tax incentives on EV purchases and production.

The latest exemple comes from Dodge, which is launching a marketing campaign ahead of the 2025 release of its first fully electric EV, the Daytona Charger.

Read more
Many hybrids rank as most reliable of all vehicles, Consumer Reports finds
many hybrids rank as most reliable of all vehicles evs progress consumer reports cr tout cars 0224

For the U.S. auto industry, if not the global one, 2024 kicked off with media headlines celebrating the "renaissance" of hybrid vehicles. This came as many drivers embraced a practical, midway approach rather than completely abandoning gas-powered vehicles in favor of fully electric ones.

Now that the year is about to end, and the future of tax incentives supporting electric vehicle (EV) purchases is highly uncertain, it seems the hybrid renaissance still has many bright days ahead. Automakers have heard consumer demands and worked on improving the quality and reliability of hybrid vehicles, according to the Consumer Reports (CR) year-end survey.

Read more
U.S. EVs will get universal plug and charge access in 2025
u s evs will get universal plug charge access in 2025 ev car to charging station power cable plugged shutterstock 1650839656

And then, it all came together.

Finding an adequate, accessible, and available charging station; charging up; and paying for the service before hitting the road have all been far from a seamless experience for many drivers of electric vehicles (EVs) in the U.S.

Read more