Skip to main content

It’s alive! These ‘living tattoos’ may someday monitor your health

3D Printing of Living Responsive Materials and Devices
From personal pizzas to
Recommended Videos
rocket parts, there seem to be few limits to the things that can be 3D printed. Even living cells have been squeezed through these 21st-century tabletop machines.

And now, genetically engineered bacteria cells have been successfully 3D printed by a team of researchers at the Massachusettts Institute of Technology (MIT). Programmed to light up when in contact with certain stimuli, the new kind of living ink is layered to create three-dimensional and interactive structures that can signal the presence of specific compounds.

Led by MIT’s Xuanhe Zhao, the research team has dubbed their method “living tattoos,” which can be placed on surfaces where the network of cells respond to chemical stimuli and information from one end to the other.

“Our ‘living tattoos’ refer to a wearable thin film which contains the genetically programed bacteria cells in different patterns,” Zhao told Digital Trends. “The functional cells can detect chemical secretions from the skin, and potentially … monitor human health.”

The patches are arranged in a treelike pattern, in which each branch is coated with cells that are responsive to specific compounds. When the patch is placed on a surface such as skin, the branches light up where they are exposed to the same compound that they are coated in. The result is an easy-to-apply, wearable sensor with an interactive display that could help detect things like chemicals, pollutants, and temperature.

“We envision this technique can allow continuous point-of-care monitoring of biomarkers based on the living cell sensing,” Zhao said. “Together with some living cells that can release therapeutics, this technology provides a unique solution for the treatment of chronic, homeostasis-related diseases such as diabetes.”

Researchers have been exploring the possibility of building living tissue structures for decades. But by experimenting with hardy bacteria cells, rather than fragile mammalian cells, Zhao and his research partner Timothy Lu were able to create more durable structures.

“It is intriguing to envision a robust and personalized implant in which different cell types are programmed to monitor inflammatory biomarkers and release growth factors to promote angiogenesis,” Zhao said. “Further, new ingestible devices based on our 3D printing of living materials may be able to modulate the gut microbiota and treat microbe-mediated disease such as obesity and diabetes.”

A paper detailing the study was published this week in the journal Advanced Materials.

Dyllan Furness
Former Digital Trends Contributor
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Range Rover’s first electric SUV has 48,000 pre-orders
Land Rover Range Rover Velar SVAutobiography Dynamic Edition

Range Rover, the brand made famous for its British-styled, luxury, all-terrain SUVs, is keen to show it means business about going electric.

And, according to the most recent investor presentation by parent company JLR, that’s all because Range Rover fans are showing the way. Not only was demand for Range Rover’s hybrid vehicles up 29% in the last six months, but customers are buying hybrids “as a stepping stone towards battery electric vehicles,” the company says.

Read more
BYD’s cheap EVs might remain out of Canada too
BYD Han

With Chinese-made electric vehicles facing stiff tariffs in both Europe and America, a stirring question for EV drivers has started to arise: Can the race to make EVs more affordable continue if the world leader is kept out of the race?

China’s BYD, recognized as a global leader in terms of affordability, had to backtrack on plans to reach the U.S. market after the Biden administration in May imposed 100% tariffs on EVs made in China.

Read more
Tesla posts exaggerate self-driving capacity, safety regulators say
Beta of Tesla's FSD in a car.

The National Highway Traffic Safety Administration (NHTSA) is concerned that Tesla’s use of social media and its website makes false promises about the automaker’s full-self driving (FSD) software.
The warning dates back from May, but was made public in an email to Tesla released on November 8.
The NHTSA opened an investigation in October into 2.4 million Tesla vehicles equipped with the FSD software, following three reported collisions and a fatal crash. The investigation centers on FSD’s ability to perform in “relatively common” reduced visibility conditions, such as sun glare, fog, and airborne dust.
In these instances, it appears that “the driver may not be aware that he or she is responsible” to make appropriate operational selections, or “fully understand” the nuances of the system, NHTSA said.
Meanwhile, “Tesla’s X (Twitter) account has reposted or endorsed postings that exhibit disengaged driver behavior,” Gregory Magno, the NHTSA’s vehicle defects chief investigator, wrote to Tesla in an email.
The postings, which included reposted YouTube videos, may encourage viewers to see FSD-supervised as a “Robotaxi” instead of a partially automated, driver-assist system that requires “persistent attention and intermittent intervention by the driver,” Magno said.
In one of a number of Tesla posts on X, the social media platform owned by Tesla CEO Elon Musk, a driver was seen using FSD to reach a hospital while undergoing a heart attack. In another post, a driver said he had used FSD for a 50-minute ride home. Meanwhile, third-party comments on the posts promoted the advantages of using FSD while under the influence of alcohol or when tired, NHTSA said.
Tesla’s official website also promotes conflicting messaging on the capabilities of the FSD software, the regulator said.
NHTSA has requested that Tesla revisit its communications to ensure its messaging remains consistent with FSD’s approved instructions, namely that the software provides only a driver assist/support system requiring drivers to remain vigilant and maintain constant readiness to intervene in driving.
Tesla last month unveiled the Cybercab, an autonomous-driving EV with no steering wheel or pedals. The vehicle has been promoted as a robotaxi, a self-driving vehicle operated as part of a ride-paying service, such as the one already offered by Alphabet-owned Waymo.
But Tesla’s self-driving technology has remained under the scrutiny of regulators. FSD relies on multiple onboard cameras to feed machine-learning models that, in turn, help the car make decisions based on what it sees.
Meanwhile, Waymo’s technology relies on premapped roads, sensors, cameras, radar, and lidar (a laser-light radar), which might be very costly, but has met the approval of safety regulators.

Read more