Skip to main content

Tiny ‘neural dust’ sensors may help scientists monitor your nerves in real time

The burgeoning field of bioelectronic medicine has been buzzing recently with Google affiliate Verily (previously Google Life Sciences) and medical company GlaxoSmithKline joining forces in a $715 million deal to launch Galvani Bioelectronics. By tapping into our bodies’ natural electrical signals, these tiny, implantable devices have the potential to support a new class of therapies known as “electroceuticals.”
Recommended Videos

A team of engineers from UC Berkeley have made a breakthrough in the emerging field by creating tiny, wireless sensors they’ve called “ultrasonic neural dust,” which provide biometric information in real time. They say this is the first device of its kind to monitor neural activity in living animals. The minimally invasive devices may help treat disorders ranging from inflammation to epilepsy. A report detailing their study was published last week in the journal Neuron.

“This is the first time someone has used ultrasound as a method of powering and communicating with extremely small implantable systems,” one of the paper’s authors, Donjon Seo, told Scientific American. “This opens up a host of applications in terms of embodied telemetry: being able to put something super-tiny, super-deep in the body, which you can park next to a nerve, organ, muscle or gastrointestinal tract, and read data out wirelessly.”

NeuralDust
Ryan Neely
Ryan Neely

To test the “neural dust,” the researchers implanted them into the muscles and surrounding nerves of rats, and transmitted ultrasound to the implanted devices, which returned information about the nerves’ electrical signals. Ultrasound also provides a power source, enabling the researchers to get rid of batteries and wires. And, although not unnoticeable in rats, the sand-grain-sized devices would be exceptionally small in humans.

“The original goal of the neural dust project was to imagine the next generation of brain-machine interfaces, and to make it a viable clinical technology,” neuroscience graduate student Ryan Neely said in a press release. “If a paraplegic wants to control a computer or a robotic arm, you would just implant this electrode in the brain and it would last essentially a lifetime.”

In the future, the engineers hope to design the device so that it can be implanted in the brain and detect non-electrical signals, including data on oxygen and hormone levels.

Dyllan Furness
Former Digital Trends Contributor
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Aptera’s 3-wheel solar EV hits milestone on way toward 2025 commercialization
Aptera 2e

EV drivers may relish that charging networks are climbing over each other to provide needed juice alongside roads and highways.

But they may relish even more not having to make many recharging stops along the way as their EV soaks up the bountiful energy coming straight from the sun.

Read more
Ford ships new NACS adapters to EV customers
Ford EVs at a Tesla Supercharger station.

Thanks to a Tesla-provided adapter, owners of Ford electric vehicles were among the first non-Tesla drivers to get access to the SuperCharger network in the U.S.

Yet, amid slowing supply from Tesla, Ford is now turning to Lectron, an EV accessories supplier, to provide these North American Charging Standard (NACS) adapters, according to InsideEVs.

Read more
Yamaha offers sales of 60% on e-bikes as it pulls out of U.S. market
Yamaha Pedal Assist ebikes

If you were looking for clues that the post-pandemic e-bike market reshuffle remains in full swing in the U.S., look no further than the latest move by Yamaha.

In a letter to its dealers, the giant Japanese conglomerate announced it will pull out of the e-bike business in the U.S. by the end of the year, according to Electrek.

Read more