Skip to main content

It’s not time travel, but scientists can turn back clock on a quantum computer

When Cher sang about wanting to turn back time, she could have packed in the career as a pop star and taken up quantum computing research if she had really meant those words. That’s one possible takeaway from a newly published piece of research from the journal Scientific Reports. In the report, physicists reveal how they were able to wind the clock on a quantum computer a fraction of a second backward in time. Well, kind of.

Researchers from the United States, Russia, and Switzerland sent a quantum bit (called a qubit) from a more complicated state to an earlier, simpler one. The work was achieved using an IBM quantum computer.

Recommended Videos

“Here, we show that, while in nature the complex conjugation needed for time reversal is exponentially improbable, one can design a quantum algorithm that includes complex conjugation and thus reverses a given quantum state,” the researchers write in their paper’s abstract. “Using this algorithm on an IBM quantum computer enables us to experimentally demonstrate a backward time dynamics for an electron scattered on a two-level impurity.”

Please enable Javascript to view this content

As MIT Technology Review magazine points out, this isn’t really reversing the course of time. It’s more like hitting rewind on a video and watching events play backward — only with the added cool factor that this was achieved using a quantum system. That doesn’t mean that it’s not potentially interesting research, though.

“On the fundamental level, we unraveled the quantum mechanical origin of the irreversibility of time,” Valerii Vinokour, a researcher at Argonne National Laboratory in Illinois, told Digital Trends. “The second law of thermodynamics tells us that a thermodynamic system cannot evolve backwards from the state with high entropy to the state with low entropy. Our novelty is in that we revealed that even the simplest pure quantum mechanical state evolves with the increasing complexity, so that even the simplest pure quantum state cannot reverse spontaneously its evolution.”

In addition to some highfalutin questions about cosmology and the universe, the work may also have more immediately applicable implications by helping eliminate noise and errors from programs written for quantum computers.

Sadly, one thing it apparently won’t do is take us closer to building an actual working time machine for transporting humans on Back to the Future-style jaunts. “Not really, no contribution to the time travel concept,” Vinokour said. “Time travel is a different and unrelated beast on which I would refrain from comments.”

Then again, isn’t that what someone would say if they had built a time machine? (Disclaimer: They really haven’t built one.)

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Intel 13th-gen Raptor Lake arrives just in time to hit back at AMD
Intel's CEO holding a Raptor Lake processor.

Intel today revealed its 13th-gen Raptor Lake processors during its Innovation 2022 event, heating up the already hot battle between AMD and Intel. Although these new chips share a lot with the previous generation under the hood, Intel is promising more cores, higher clock speeds, and performance that will catapult 13th-gen chips to the top of the best CPU rankings.

Before digging in, here's a quick look at specs for the three Raptor Lake processors coming. Some specs are official, while others have been compiled from specs posted by Intel a couple of weeks back (though not confirmed).

Read more
Scientists just achieved a breakthrough in quantum computing
A two-qubit gate between two atoms.

A research team from the Japanese Institute for Molecular Science has now made a great stride in quantum computing, making it happen with the help of a two-qubit gate. A qubit is the quantum equivalent of a binary bit, which is a basic unit of information used in computing.

The team successfully managed to execute the world's fastest two-qubit gate in just 6.5 nanoseconds. In the process, the researchers had to overcome some of the limitations linked to this kind of technology. However, there's a catch -- the method they used might be tricky to replicate in a less research-based environment.

Read more
Brain-computer interfaces have been implanted in humans for the first time
brain computer interfaces implanted in humans for the first time synchron bci stentrode and io

A Brain-Computer Interface (BCI) is now in clinical trials on human patients, the first time this has ever happened in the United States. With all of the buzz around Neuralink, one might expect this breakthrough would come from Elon Musk's moonshot company. However, the honor goes to a lesser-known brain interface technology leader, Synchron, and its Stentrode device.

While flashy claims of BCIs allowing VR games without a headset and amplifying human intelligence might make headlines, those are distant dreams. Meanwhile, tangible solutions to medical problems that affect patients today are being addressed by Synchron and other BCI innovators.

Read more