Skip to main content

U.S. Army wants to analyze drivers' brain waves to keep them awake at the wheel

reading brain waves at the wheel 66838121 xl
Aleksandr Davydov/123RF
Next to inebriation, speeding, and inattention, people driving while drowsy is a major cause of car crashes. Well, forget about cranking loud music, drinking convenience store coffee, and keeping your windows rolled down, because the United States Army has an alternative solution: reading your brain waves.

In a new research paper, funded by the Army’s Human Research and Engineering Directorate (HRED) unit, computer scientists describe an algorithm for detecting driver drowsiness based on their electroencephalogram (EEG) signal.

Recommended Videos

“Since EEG signals directly measure the brain activities, theoretically EEG based approaches should be more reliable [than other solutions],” co-author Dr. Dongrui Wu told Digital Trends. “More importantly, it may be possible to predict the driver’s drowsiness from EEG signals before it actually happens, which gives us ample time for interventions.”

As part of the study, 16 different participants had their brain waves monitored while carrying out a simulated drive down a highway, complete with occasional lane changes. The algorithms the team had developed were then used to analyze the EEG results and predict drowsiness.

“The main real-world application is driver drowsiness estimation to prevent accidents,” Wu continued. “In the paper we reported an application scenario of highway driving, but the technique can also be applied to other professionals including pilots, soldiers, and construction vehicle drivers. Another possible application is to monitor in real time the sleep status of a person from EEG, in the hospital or at home. Beyond EEG and brain-computer interfaces, the algorithm proposed in this paper can also be used in many other applications that involve people and hence individual differences, [such as] affective computing, which involves estimating the emotions from a person’s voices or other body signals.”

For now, Wu said the researchers are continuing to improve the algorithm they’ve developed for more accurate detection. They additionally want to experiment with different numbers of, and locations for, EEG sensors to get the most accurate predictions possible. By doing this, they hope to achieve the optimal compromise between performance and portability.

After that we guess it’s just about finding the best way of jolting drivers awake and keeping them that way. Until autonomous cars have been fully perfected, that is.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Range Rover’s first electric SUV has 48,000 pre-orders
Land Rover Range Rover Velar SVAutobiography Dynamic Edition

Range Rover, the brand made famous for its British-styled, luxury, all-terrain SUVs, is keen to show it means business about going electric.

And, according to the most recent investor presentation by parent company JLR, that’s all because Range Rover fans are showing the way. Not only was demand for Range Rover’s hybrid vehicles up 29% in the last six months, but customers are buying hybrids “as a stepping stone towards battery electric vehicles,” the company says.

Read more
BYD’s cheap EVs might remain out of Canada too
BYD Han

With Chinese-made electric vehicles facing stiff tariffs in both Europe and America, a stirring question for EV drivers has started to arise: Can the race to make EVs more affordable continue if the world leader is kept out of the race?

China’s BYD, recognized as a global leader in terms of affordability, had to backtrack on plans to reach the U.S. market after the Biden administration in May imposed 100% tariffs on EVs made in China.

Read more
Tesla posts exaggerate self-driving capacity, safety regulators say
Beta of Tesla's FSD in a car.

The National Highway Traffic Safety Administration (NHTSA) is concerned that Tesla’s use of social media and its website makes false promises about the automaker’s full-self driving (FSD) software.
The warning dates back from May, but was made public in an email to Tesla released on November 8.
The NHTSA opened an investigation in October into 2.4 million Tesla vehicles equipped with the FSD software, following three reported collisions and a fatal crash. The investigation centers on FSD’s ability to perform in “relatively common” reduced visibility conditions, such as sun glare, fog, and airborne dust.
In these instances, it appears that “the driver may not be aware that he or she is responsible” to make appropriate operational selections, or “fully understand” the nuances of the system, NHTSA said.
Meanwhile, “Tesla’s X (Twitter) account has reposted or endorsed postings that exhibit disengaged driver behavior,” Gregory Magno, the NHTSA’s vehicle defects chief investigator, wrote to Tesla in an email.
The postings, which included reposted YouTube videos, may encourage viewers to see FSD-supervised as a “Robotaxi” instead of a partially automated, driver-assist system that requires “persistent attention and intermittent intervention by the driver,” Magno said.
In one of a number of Tesla posts on X, the social media platform owned by Tesla CEO Elon Musk, a driver was seen using FSD to reach a hospital while undergoing a heart attack. In another post, a driver said he had used FSD for a 50-minute ride home. Meanwhile, third-party comments on the posts promoted the advantages of using FSD while under the influence of alcohol or when tired, NHTSA said.
Tesla’s official website also promotes conflicting messaging on the capabilities of the FSD software, the regulator said.
NHTSA has requested that Tesla revisit its communications to ensure its messaging remains consistent with FSD’s approved instructions, namely that the software provides only a driver assist/support system requiring drivers to remain vigilant and maintain constant readiness to intervene in driving.
Tesla last month unveiled the Cybercab, an autonomous-driving EV with no steering wheel or pedals. The vehicle has been promoted as a robotaxi, a self-driving vehicle operated as part of a ride-paying service, such as the one already offered by Alphabet-owned Waymo.
But Tesla’s self-driving technology has remained under the scrutiny of regulators. FSD relies on multiple onboard cameras to feed machine-learning models that, in turn, help the car make decisions based on what it sees.
Meanwhile, Waymo’s technology relies on premapped roads, sensors, cameras, radar, and lidar (a laser-light radar), which might be very costly, but has met the approval of safety regulators.

Read more