Skip to main content

How SETI@home accelerated alien hunting with an army of armchair astronomers

On July 23, 1995, Alan Hale and Thomas Bopp both had telescopes trained on the sky. Both noticed a fuzzy object that turned out to be a comet. Hale has a PhD in astronomy, but Bopp was borrowing a friend’s instrument. Because they’d spotted the object at about the same time, Hale and Bopp both had their names attached to the now famous comet.

Image used with permission by copyright holder

There’s always been plenty of space for amateurs in the field of astronomy. While it’s often been solo star hunters or small societies, the SETI@Home experiment brought together millions of citizen scientists interested in learning if humans are alone in the universe.

If you dropped by a dorm room in the early 2000s, you might have seen — in place of an ocean- or space-themed screensaver — an idle computer displaying a colorful 3D graph along with information about CPU time and other data. That was all thanks to SETI — the Search for Extraterrestrial Intelligence. For almost 21 years, the organization’s distributed citizen science project, SETI@home, has been utilizing enthusiasts’ computers to analyze radio telescope data in the hopes of finding signals sent by extraterrestrial life.

Collaboration is humanity’s superpower. It has enabled some of the most significant advances the world has ever seen, and in this series, we’ll showcase some of the most incredible and inspiring examples of collaboration happening right now.
Event Horizon Telescope

In search of a signal

“A long-standing problem in trying to find extraterrestrial intelligence is that we can always collect more data from the telescopes than we can analyze with the instruments that we have there,” Eric Korpela, the current director of SETI@home, told Digital Trends.

Visualizing SETI@home

David Gedye, a graduate student at the University of California, Berkeley in the mid-1990s, came up the original idea for the project. “He figured that if we could get 10,000 people to donate their computer time, we could do a much better job of analyzing data,” said Korpela. The experiment launched in May 1999. Within the first week, nearly 300,000 computers were processing data from the Arecibo Observatory. After a couple of months, there were over a million.

Searching for extraterrestrial intelligence involves looking at a spot in the sky and seeing a signal. Look again several months later, and it’s still there, in the same spot. For your signal to rise above the background noise, you either compress it into a narrow frequency band or compress it in time,” said Korpela. The signal might be a single, long tone, like a whistle, or come in pulses. If the extraterrestrials are on a planet, then the signal will get blocked as it rotates. “You have to take into account that half the time the signals are going to be visible, and you have to account for the orbital and the rotational motions of that planet,” he said. On top of all that, there’s interference from Earthling-made objects, like satellites and cell phones.

Modem home

“In 1999 when we started, we sized our data chunks that we were sending to people to be about the size that you could do in a reasonable amount of time on a home computer — a reasonable amount of time being a week,” said Korpela. At the time, it would take about five minutes to download the 350 KB of data — important for the dial-up modems of the time. These data chunks or work units are still the same size, but now they take virtually no time to download. Processing is much quicker, too. What once took a week, a modern computer can do in about an hour and a half.

SETI@home
Image used with permission by copyright holder

Because the SETI@home team wasn’t prepared for the early levels of interest, the system initially crashed with the influx of people. During a 2009 talk, Dan Werthimer, one of the project’s co-founders, said it had attracted 5.46 million participants, in 226 countries, which equalled 2.3 million years of computing time. With such a long-term project, interest has waxed and waned over the years, with news about SETI bringing newcomers. “For the last few years, we’ve been averaging around 150,000 people,” said Korpela. Most of them run the application on a couple of computers or an Android device. Current smartphones are more than capable of running a program built for late-’90s computers. However, Korpela admits phone tech is outpacing their ability to keep up, and the Android app is a bit out-of-date. With limited funding, it’s hard to divert resources. The team relies on its volunteers to let them know when there’s a glitch with the software.

No signs yet

As the tech has changed, the SETI@home project has evolved as well. It’s analyzing some of the data from the Berkeley SETI Research Center’s Breakthrough Listen project, which is looking for signals with the Green Banks and Parkes telescopes. It’s also expanded the types of signals it’s looking at, from narrowband to wideband, as well. With wideband, SETI@home is searching for frequencies with more data capacity.

“Over the last 20 years, we’ve gotten billions and billions of potential signals,” said Korpela. “I think at last count, it was close to 20 billion potential signals in our database.” He and the team are working on software to analyze all that information. In some upcoming papers, the team will list the most promising areas of the sky. The software injects signals that the SETI@home team believes mimics what an E.T. would send. Thus far, it hasn’t found anything that resembles this artificial extraterrestrial intelligence. If anything looks interesting, Korpela hopes others might take a look. China’s new FAST Radio Telescope is one of the world’s most powerful. “Maybe if you point a bigger telescope at it, maybe it is interesting,” Korpela said of some of the potential spots. “So that sort of thing might raise the interest of more people, I think.”

Jenny McGrath
Former Digital Trends Contributor
Jenny McGrath is a senior writer at Digital Trends covering the intersection of tech and the arts and the environment. Before…
Range Rover’s first electric SUV has 48,000 pre-orders
Land Rover Range Rover Velar SVAutobiography Dynamic Edition

Range Rover, the brand made famous for its British-styled, luxury, all-terrain SUVs, is keen to show it means business about going electric.

And, according to the most recent investor presentation by parent company JLR, that’s all because Range Rover fans are showing the way. Not only was demand for Range Rover’s hybrid vehicles up 29% in the last six months, but customers are buying hybrids “as a stepping stone towards battery electric vehicles,” the company says.

Read more
BYD’s cheap EVs might remain out of Canada too
BYD Han

With Chinese-made electric vehicles facing stiff tariffs in both Europe and America, a stirring question for EV drivers has started to arise: Can the race to make EVs more affordable continue if the world leader is kept out of the race?

China’s BYD, recognized as a global leader in terms of affordability, had to backtrack on plans to reach the U.S. market after the Biden administration in May imposed 100% tariffs on EVs made in China.

Read more
Tesla posts exaggerate self-driving capacity, safety regulators say
Beta of Tesla's FSD in a car.

The National Highway Traffic Safety Administration (NHTSA) is concerned that Tesla’s use of social media and its website makes false promises about the automaker’s full-self driving (FSD) software.
The warning dates back from May, but was made public in an email to Tesla released on November 8.
The NHTSA opened an investigation in October into 2.4 million Tesla vehicles equipped with the FSD software, following three reported collisions and a fatal crash. The investigation centers on FSD’s ability to perform in “relatively common” reduced visibility conditions, such as sun glare, fog, and airborne dust.
In these instances, it appears that “the driver may not be aware that he or she is responsible” to make appropriate operational selections, or “fully understand” the nuances of the system, NHTSA said.
Meanwhile, “Tesla’s X (Twitter) account has reposted or endorsed postings that exhibit disengaged driver behavior,” Gregory Magno, the NHTSA’s vehicle defects chief investigator, wrote to Tesla in an email.
The postings, which included reposted YouTube videos, may encourage viewers to see FSD-supervised as a “Robotaxi” instead of a partially automated, driver-assist system that requires “persistent attention and intermittent intervention by the driver,” Magno said.
In one of a number of Tesla posts on X, the social media platform owned by Tesla CEO Elon Musk, a driver was seen using FSD to reach a hospital while undergoing a heart attack. In another post, a driver said he had used FSD for a 50-minute ride home. Meanwhile, third-party comments on the posts promoted the advantages of using FSD while under the influence of alcohol or when tired, NHTSA said.
Tesla’s official website also promotes conflicting messaging on the capabilities of the FSD software, the regulator said.
NHTSA has requested that Tesla revisit its communications to ensure its messaging remains consistent with FSD’s approved instructions, namely that the software provides only a driver assist/support system requiring drivers to remain vigilant and maintain constant readiness to intervene in driving.
Tesla last month unveiled the Cybercab, an autonomous-driving EV with no steering wheel or pedals. The vehicle has been promoted as a robotaxi, a self-driving vehicle operated as part of a ride-paying service, such as the one already offered by Alphabet-owned Waymo.
But Tesla’s self-driving technology has remained under the scrutiny of regulators. FSD relies on multiple onboard cameras to feed machine-learning models that, in turn, help the car make decisions based on what it sees.
Meanwhile, Waymo’s technology relies on premapped roads, sensors, cameras, radar, and lidar (a laser-light radar), which might be very costly, but has met the approval of safety regulators.

Read more