Skip to main content

Everything you need to know about the magical magnetic goop known as ferrofluid

what is ferrofluid 29488935  sculpture of induced by a neodym magnet
Image used with permission by copyright holder
Holiday Gift Guide Banner
Image used with permission by copyright holder

This product was featured in our Holiday Gift Guide! Check it out to find gift inspiration for everyone in your life.

If you’ve seen those videos with fascinating ink-like fluid spiraling into thorns and prickling patterns, you’ve seen ferrofluid. But what exactly is this stuff, and why does it act that way? Is it really some type of liquid magnet? Perhaps more importantly, can you get some? Let’s dive in!

Ferrofluid: When magnets go nano

The typical ferrofluid you see in viral videos is made by mixing a bunch of very, very small bits of iron oxide with oil, and usually some kind of surfactant to prevent the pieces from clogging together. The most common kind of iron oxide used in ferrofluid is known as magnetite, because — you guessed it — it’s a ferromagnetic material that’s not only attracted to magnets, but that can also be magnetized and turned into a permanent magnet itself. Ferrofluid is basically little bits of this stuff suspended in goo; that’s the easy answer.

The more complicated explanation is all about nanoparticles. Back in the 1960s, experiments in chemistry showed that ferrofluids could be created and stabilized — a discovery actually made by NASA while searching for ways to control liquid fuel in the weightlessness of space.

Image used with permission by copyright holder

Improved techniques eventually yielded easy ways to splice iron oxide into nanoparticles around 10 nanometers wide. That’s so small that these particles rarely even settle to the bottom of the fluid — they just stay suspended, floating around. They are even subject to good old Brownian motion, which keeps the ferrofluid evenly distributed and slick for long periods of time.

Making those weird designs

Okay, but how does the ferrofluid magically transform into spikes and those crazy hedgehog shapes?

Think of it as a very careful chemical balancing act involving many different forces all hitting a sweet spot. Imagine that you apply a magnetic force to a ferrofluid, say, through a permanent magnet you have lying around. Here are several of the key interactions that happen:

  1. The magnetite acts as magnetite does and is attracted/repelled based on the magnetic field – all those little nanoparticles respond to the force and start moving.
  2. The surfactant (the same kind of chemical used in detergent to remove stains) remains ultra-slippery and refuses to let the nanoparticles attach to each other. They keep slipping away while they move, forming quick bonds with the surfactant instead to become a special type of ligand, or a coordinate bond with a metal atom.
  3. At the same time, the surface of the ferrofluid experiences a lot of surface tension, which allows the fluid to maintain shapes for longer periods of time when it is drawn out.
  4. Meanwhile, Van der Waals forces are having a similar effect on the molecules within the mixture, allowing them to maintain a surprising amount of cohesion as the ferrofluid moves.
  5. On top of it all, as the ferrofluid is being pulled by the magnetic force, the heaviest parts are also being dragged back down by gravity at the same time.

Add it all together, and what do you get? A dazzling display of spikes, rivulets, and magical behavior. Additionally, the fluid is what is known as “superparamagnetic” which means that, unlike normal magnetite, it loses its charge every time and collapses back into a fluid, unable to hold a permanent, magnetically stabilized form.

Image used with permission by copyright holder

Note that this mixture of reactions doesn’t happen with all ferrofluids, all the time. The ferrofluid demonstrations you see online or in a lab are made with particular ferrofluids that are known for having that kind of effect. Other ferrofluids can behave in different ways, although none are quite as visually striking.

Practical applications for ferrofluid

Remember, ferrofluids weren’t originally designed for fun: They can be created from iron, cobalt, nickel, and a variety of different oils and surfactants, giving them a variety of applications in the industrial world. The most important is probably their use in semiconductor manufacturing, where the fluid is used to seal powerful hydraulic machinery and other components to increase power while preventing contamination.

For an example a little closer to home, consider large, fancy speakers. Sometimes these loudspeakers use a magnet surrounded by ferrofluid: This keeps the magnet cool and helps prevent unwanted vibrations. Likewise, customized SATA hard drives sometimes use ferrofluids for similar reasons.

In the future, scientists hope to successfully use ferrofluid as a transmitting material for chemical treatments in healthcare – for example, allowing doctors to control exactly where a drug is focused in the body.

Buying that cool ferrofluid

One of the useful things about ferrofluids (unlike other showy pieces of science) is that you can easily locate safe versions, which makes them great for showing off in the classroom or at home. Yes, you can absolutely buy your own ferrofluids, and you even have a couple different options:

  • Kits with bottled ferrofluid: These tend to be cheap and easy to play with. However, ferrofluids are notorious for staining anything they touch, so you’ll have to be very careful when using them. Some experience is preferred.
  • Glass display bottles: These are safer and prettier – you simply use magnets to move the ferrofluid around the bottle. However, there are two problems here. First, these bottles don’t last forever, because the ferrofluid eventually starts to settle or coats the bottle surface. Second, these bottles are tightly sealed, which means they often fare poorly in freezing temperatures.
  • Artistic display options: These are fancier bottles or lava lamp-like displays designed more for showing off than teaching. Always read reviews carefully for these to make sure the display doesn’t have any long-term issues.

Creating your own ferrofluid

If you’re more of a DIY-minded person, you can even create your own ferrofluids, although it’s significantly more dangerous than just buying a bottle. However, some hobbyists do create ferrofluid as a powerful acidic reagent, or even use it to make their own art. Just be prepared to use some tricky chemicals like ferric chloride and ammonia, as well as the necessary equipment to boil it (and all the risks that entails). A lab is often the best location for a project like this, and if you find the right class you may even be able to create it as part of a project.

Tyler Lacoma
Former Digital Trends Contributor
If it can be streamed, voice-activated, made better with an app, or beaten by mashing buttons, Tyler's into it. When he's not…
Range Rover’s first electric SUV has 48,000 pre-orders
Land Rover Range Rover Velar SVAutobiography Dynamic Edition

Range Rover, the brand made famous for its British-styled, luxury, all-terrain SUVs, is keen to show it means business about going electric.

And, according to the most recent investor presentation by parent company JLR, that’s all because Range Rover fans are showing the way. Not only was demand for Range Rover’s hybrid vehicles up 29% in the last six months, but customers are buying hybrids “as a stepping stone towards battery electric vehicles,” the company says.

Read more
BYD’s cheap EVs might remain out of Canada too
BYD Han

With Chinese-made electric vehicles facing stiff tariffs in both Europe and America, a stirring question for EV drivers has started to arise: Can the race to make EVs more affordable continue if the world leader is kept out of the race?

China’s BYD, recognized as a global leader in terms of affordability, had to backtrack on plans to reach the U.S. market after the Biden administration in May imposed 100% tariffs on EVs made in China.

Read more
Tesla posts exaggerate self-driving capacity, safety regulators say
Beta of Tesla's FSD in a car.

The National Highway Traffic Safety Administration (NHTSA) is concerned that Tesla’s use of social media and its website makes false promises about the automaker’s full-self driving (FSD) software.
The warning dates back from May, but was made public in an email to Tesla released on November 8.
The NHTSA opened an investigation in October into 2.4 million Tesla vehicles equipped with the FSD software, following three reported collisions and a fatal crash. The investigation centers on FSD’s ability to perform in “relatively common” reduced visibility conditions, such as sun glare, fog, and airborne dust.
In these instances, it appears that “the driver may not be aware that he or she is responsible” to make appropriate operational selections, or “fully understand” the nuances of the system, NHTSA said.
Meanwhile, “Tesla’s X (Twitter) account has reposted or endorsed postings that exhibit disengaged driver behavior,” Gregory Magno, the NHTSA’s vehicle defects chief investigator, wrote to Tesla in an email.
The postings, which included reposted YouTube videos, may encourage viewers to see FSD-supervised as a “Robotaxi” instead of a partially automated, driver-assist system that requires “persistent attention and intermittent intervention by the driver,” Magno said.
In one of a number of Tesla posts on X, the social media platform owned by Tesla CEO Elon Musk, a driver was seen using FSD to reach a hospital while undergoing a heart attack. In another post, a driver said he had used FSD for a 50-minute ride home. Meanwhile, third-party comments on the posts promoted the advantages of using FSD while under the influence of alcohol or when tired, NHTSA said.
Tesla’s official website also promotes conflicting messaging on the capabilities of the FSD software, the regulator said.
NHTSA has requested that Tesla revisit its communications to ensure its messaging remains consistent with FSD’s approved instructions, namely that the software provides only a driver assist/support system requiring drivers to remain vigilant and maintain constant readiness to intervene in driving.
Tesla last month unveiled the Cybercab, an autonomous-driving EV with no steering wheel or pedals. The vehicle has been promoted as a robotaxi, a self-driving vehicle operated as part of a ride-paying service, such as the one already offered by Alphabet-owned Waymo.
But Tesla’s self-driving technology has remained under the scrutiny of regulators. FSD relies on multiple onboard cameras to feed machine-learning models that, in turn, help the car make decisions based on what it sees.
Meanwhile, Waymo’s technology relies on premapped roads, sensors, cameras, radar, and lidar (a laser-light radar), which might be very costly, but has met the approval of safety regulators.

Read more