Smart implants designed for monitoring conditions inside the body, delivering drug doses, or otherwise treating diseases are clearly the future of medicine. But, just like a satellite is a useless hunk of metal in space without the right communication channels, it’s important that we can talk to these implants. Such communication is essential, regardless of whether we want to relay information and power to these devices or receive data in return.
Fortunately, researchers from Massachusetts Institute of Technology (MIT) and Brigham and Women’s Hospital may have found a way to help. Scientists at these institutes have developed a new method to power and communicate with implants deep inside the human body.
“IVN (in-vivo networking) is a new system that can wirelessly power up and communicate with tiny devices implanted or injected in deep tissues,” Fadel Adib, an assistant professor in MIT’s Media Lab, told Digital Trends. “The implants are powered by radio frequency waves, which are safe for humans. In tests in animals, we showed that the waves can power devices located 10 centimeters deep in tissue, from a distance of one meter.”
These same demonstration using pigs showed that it is possible to extend this one-meter range up to 38 meters (125 feet), provided that the sensors are located very close to the skin’s surface. These sensors can be extremely small, due to their lack of an onboard battery. This is different from current implants, such as pacemakers, which have to power themselves since external power sources are not yet available. For their demo, the scientists used a prototype sensor approximately the size of a single grain of rice. This could be further shrunk down in the future, they said.
“The incorporation of [this] system in ingestible or implantable device could facilitate the delivery of drugs in different areas of the gastrointestinal tracts,” Giovanni Traverso, an assistant professor at Brigham and Women’s Hospital and Harvard Medical School, told us. “Moreover, it could aid in sensing of a range of signals for diagnosis, and communicating those externally to facilitate the clinical management of chronic diseases.”
The IVN system is due to be shown off at the Association for Computing Machinery Special Interest Group on Data Communication (SIGCOMM) conference in August.