Skip to main content

This is how Google’s internet-serving Loon balloons can float for nearly a year

Image used with permission by copyright holder

Only Google could think that the way to improve the flight of giant, helium-filled balloons is by coming up with better algorithms. And to be fair to the Mountain View-based search leviathan, it seems to have worked.

For the past couple of years, Project Loon, a subsidiary of Google’s parent company Alphabet, has been working to provide internet access in rural and remote parts of the world by using high-altitude balloons in the stratosphere to create aerial wireless networks. Last year, Loon announced that it had reached 1 million hours of stratospheric flight with its combined balloon fleet. Then, at the end of October, Loon set a new record for longest stratospheric flight by remaining airborne for a whopping 312 days, covering a distance of some 135,000 miles.

Recommended Videos

In a new article, published in the journal Nature, Loon explains just how its balloons are able to stay in the air for weeks at a time — without human intervention or full knowledge of surrounding winds. The secret? Some impressively cutting-edge A.I.

Catching currents

“Loon balloons navigate by moving up or down in altitude to catch favorable wind currents that take them in a desired direction,” Sal Candido, Loon’s chief technology officer, told Digital Trends. “The decisions about when to ascend or descend are determined by sophisticated algorithms. Traditionally, these algorithms have been written by human engineers. With reinforcement learning, we are leveraging A.I. to build these algorithms. In essence, we have built a machine that is capable of building a better navigation system than we humans can. That machine can also build these navigation systems in a fraction of the time that it takes us humans.”

alphabet-project-loon
Image used with permission by copyright holder

Reinforcement learning is a flavor of machine learning heavily inspired by behaviorist psychology. Reinforcement learning’s guiding principle is the idea that software agents can learn to take action based around the maximizing of a reward. Famously, reinforcement learning was used by Google DeepMind to teach an A.I. to play classic Atari video games — using no more information than just the pixels that made up each frame of the games and the on-screen score. By being told to maximize its score, the DeepMind A.I. learned to play the games through trial-and-error, gradually honing its skills until it was a master.

Flying a balloon in such a way that it doesn’t get blown off-course is a far different task to playing computer games, of course. A successful balloon journey doesn’t come with a high score that makes it immediately apparent that it’s been successful. But, as Candido said, reinforcement learning is nonetheless a crucial part of Loon’s success.

“[Reinforcement learning] is able to process huge amounts of information and apply that to solving the problem, rather than a human needing to inherently understand how to react to that information or having a computer search the space of all possible outcomes,” he said. “Because Loon navigation improves by considering a huge number of factors and information [or] data, the complexity has surpassed what engineers are easily able to do [with regards to] the former, and the latter search is computationally difficult to scale across a full fleet. [That makes reinforcement learning] a great tool for the job.”

Making the right decisions

Using reinforcement learning, the artificially intelligent balloons are able to make optimal decisions about how to move, based on historical wind knowledge, observed and forecasted winds, and the projected future flight paths. All of this data is weighed up and different scenarios simulated before the balloon decides how to act.

Loon: 312 Days in the Stratosphere

Compared to the previous controllers used to control Loon, the new reinforcement learning-based methodology more effectively kept Loon’s balloons within range of their ground station so they could effectively send and receive signals. When they were knocked off-course, it additionally meant them returning faster to the right positions.

“Our new reinforcement learning-powered algorithm is active today, helping our balloons to stay above users in Kenya, whom we are serving as part of our partnership with Telkom Kenya,” Candido said.

Alphabet has long been committed to the idea of tech for good. The more people Loon can provide internet access to, the better the initiative will be. And, to do that, it needs ever-smarter technology driving it. As evidenced by this latest milestone, it seems to have all bases covered.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Range Rover’s first electric SUV has 48,000 pre-orders
Land Rover Range Rover Velar SVAutobiography Dynamic Edition

Range Rover, the brand made famous for its British-styled, luxury, all-terrain SUVs, is keen to show it means business about going electric.

And, according to the most recent investor presentation by parent company JLR, that’s all because Range Rover fans are showing the way. Not only was demand for Range Rover’s hybrid vehicles up 29% in the last six months, but customers are buying hybrids “as a stepping stone towards battery electric vehicles,” the company says.

Read more
BYD’s cheap EVs might remain out of Canada too
BYD Han

With Chinese-made electric vehicles facing stiff tariffs in both Europe and America, a stirring question for EV drivers has started to arise: Can the race to make EVs more affordable continue if the world leader is kept out of the race?

China’s BYD, recognized as a global leader in terms of affordability, had to backtrack on plans to reach the U.S. market after the Biden administration in May imposed 100% tariffs on EVs made in China.

Read more
Tesla posts exaggerate self-driving capacity, safety regulators say
Beta of Tesla's FSD in a car.

The National Highway Traffic Safety Administration (NHTSA) is concerned that Tesla’s use of social media and its website makes false promises about the automaker’s full-self driving (FSD) software.
The warning dates back from May, but was made public in an email to Tesla released on November 8.
The NHTSA opened an investigation in October into 2.4 million Tesla vehicles equipped with the FSD software, following three reported collisions and a fatal crash. The investigation centers on FSD’s ability to perform in “relatively common” reduced visibility conditions, such as sun glare, fog, and airborne dust.
In these instances, it appears that “the driver may not be aware that he or she is responsible” to make appropriate operational selections, or “fully understand” the nuances of the system, NHTSA said.
Meanwhile, “Tesla’s X (Twitter) account has reposted or endorsed postings that exhibit disengaged driver behavior,” Gregory Magno, the NHTSA’s vehicle defects chief investigator, wrote to Tesla in an email.
The postings, which included reposted YouTube videos, may encourage viewers to see FSD-supervised as a “Robotaxi” instead of a partially automated, driver-assist system that requires “persistent attention and intermittent intervention by the driver,” Magno said.
In one of a number of Tesla posts on X, the social media platform owned by Tesla CEO Elon Musk, a driver was seen using FSD to reach a hospital while undergoing a heart attack. In another post, a driver said he had used FSD for a 50-minute ride home. Meanwhile, third-party comments on the posts promoted the advantages of using FSD while under the influence of alcohol or when tired, NHTSA said.
Tesla’s official website also promotes conflicting messaging on the capabilities of the FSD software, the regulator said.
NHTSA has requested that Tesla revisit its communications to ensure its messaging remains consistent with FSD’s approved instructions, namely that the software provides only a driver assist/support system requiring drivers to remain vigilant and maintain constant readiness to intervene in driving.
Tesla last month unveiled the Cybercab, an autonomous-driving EV with no steering wheel or pedals. The vehicle has been promoted as a robotaxi, a self-driving vehicle operated as part of a ride-paying service, such as the one already offered by Alphabet-owned Waymo.
But Tesla’s self-driving technology has remained under the scrutiny of regulators. FSD relies on multiple onboard cameras to feed machine-learning models that, in turn, help the car make decisions based on what it sees.
Meanwhile, Waymo’s technology relies on premapped roads, sensors, cameras, radar, and lidar (a laser-light radar), which might be very costly, but has met the approval of safety regulators.

Read more