Skip to main content

What the hell are quantum dots, and why do you want them in your next TV?

A row of illuminated quantum dots.
Vials containing quantum dots: fluorescent nanoparticles of semiconducting material. Image credit: PlasmaChem PlasmaChem / PlasmaChem
LED, LCD, OLED, 4K, UHD … the last thing the TV industry needs right now is another techno-acronym. But TV tech being the ever-evolving juggernaut that it is, we were bound to have to embrace new terminology at some point. Turns out, that point is now, and the term — which will be the buzzword de rigeur in 2015 — is quantum dots. Although we’re glad to be spared another acronym, the term “quantum dot” not only fails to explain what the tech does, but the subject matter is pretty heady stuff, too.

Not to worry, that’s what we’re here for. Whichever pseudonym you hear used to refer to them, at the end of the day, what quantum dots really mean to you is: better color.

Recommended Videos

Simply put, quantum dots are tiny particles that glow when you shine light on them. Cram a bunch of them on a sheet of film, shine light on that film, and the film glows! Doesn’t sound all that magical, does it? Of course, it isn’t really as simple as that, and as complicated as the science behind quantum dots may be, how they work to make LCD TVs look better really is fascinating stuff. With that in mind, here’s an explainer of how quantum dots work in televisions as it might be told by your junior high science teacher (because believe us, the college-level explainer will put you to sleep).

First you start with an LCD

Quantum dots, or in scientific parlance, nanocrystal semiconductors, don’t amount to a new display type or resolution. Quantum dots are just a new component in an LCD screen. More specifically, quantum dots work by fixing a glaring problem inherent to LED-backlit LCD TVs.

That means we’ll need to explain how basic LCD displays work before we go any further, so treat this as a refresher if you already know.

LG-Quantum-Dot-TV
Image used with permission by copyright holder

Your basic LCD TV has three major parts: a white backlight that generates the light you see, color filters that will divide that light into pinpricks of red, green and blue light, and a liquid-crystal module that works like a grid of tiny windows (pixels) to blend those colors into an image. Each pixel has its own red, green and blue subpixels – those pinpricks of light — which can wink open and closed with liquid crystals, almost like shutters. When white light from the LEDs passes through a pixel with its red and green subpixels totally shut and the blue subpixel totally open, it appears blue to your eye. If all three subpixels are open, the red, green and blue combine to appear white. Closing them all produces black. By mixing the amount of light coming from different subpixels, the TV is able to create many different colors in various shades and hues. What you see on the other end is a picture.

What it means to you is: better color.

Today’s TVs use LEDs to provide the “white” backlight, but here’s the problem with this setup: LEDs suck at producing white light. As anyone who made the transition from incandescent light bulbs to compact fluorescent or LED lights knows, things in your home don’t look the same after you make the switch. Colors look off, and the light itself seems cold and sterile. Light bulb makers have worked hard to change the “temperature” of these lights using various methods to make them feel warmer and more natural to our eyes, and today they’re easier to live with. In a way, quantum dots do something similar by helping the LED backlights in LCD televisions be more conducive to creating accurate colors.

The funny thing about LED lights is that they don’t glow white naturally. The “white” LEDs in your TV are actually blue LEDs coated with a yellow phosphor, which produces a “sort of” white light. But this quasi-white light falls short of the ideal. If you fed it into a prism (remember those from science class?) it wouldn’t produce a rainbow of light equally bright in every shade. For instance, it is woefully short on intensity in the red wavelengths, so red would appear dimmer than green and blue after filtering, thus impacting every other color the TV tries to make. Engineers are able to compensate for this uneven color intensity by balancing it with workarounds (you could dial down green and blue to match, for instance), but the intensity of the final image suffers as a result.

What TV manufacturers need is a “cleaner” source of white light that’s more evenly balanced across the red, green and blue color spectrum. That’s where the quantum dots come in.

Enter the quantum dot

As a reminder, quantum dots are tiny phosphorescent crystals that glow when you shine light on them. They can glow in an array of colors, and which color they glow is determined by their size. Since the size of a quantum dot can now be precisely controlled (based on how many atoms are in it – these things are smaller than a virus) the resulting light they put out can be dialed in just as precisely. They’re also remarkably stable, meaning the effect doesn’t wear out or change over time. A quantum dot manufactured to glow a specific shade of red will always glow that shade of red. See where this is going?

qdef-exploded-diagram
Quantum-dot enhancement film (QDEF) ends up sandwiched between a display’s backlight and traditional liquid-crystal module (LCM). Image used with permission by copyright holder

What TV manufacturers are now doing is taking a sheet of film and saturating it with a bunch of quantum dots that have been engineered to glow in very precise shades of red and green. They then ditch that yellow phosphor-covered LED they’ve been using and instead employ a pure blue LED.

Now, at this point you might be thinking: Eureka! We’ve now got a blue light, with red and green coming from the quantum dots! RGB = done!” But that’s not how it actually works. Remember, the quantum dots are on a giant, uniform sheet, not arranged neatly into microscopic subpixels. So all those colors go in a blender.

When the blue LED shines on the quantum dot-saturated sheet of film and the dots start glowing red and green, all three of them combine to create the ideal white light. Now the color filters in the LCD screen have a better source of light to work with and can more precisely and efficiently filter out red, green, and blue. Since there are fewer undesirable “peaks” in white light, the color filters don’t have to squash them out. For instance, there’s little intensity in the orange and yellow wavelengths to take out when creating red, so you get brighter, more accurate reds. And when the red, green, and blues are brighter and more accurate, every resulting color that comes from the color mixing process is going to be more accurate, and brighter.

Voila. You now have an LCD TV with much better color capabilities. And this wider color gamut is going to be especially great for 4K UHD televisions, which can handle a lot more color information than 1080p HD televisions.

There’s just one catch.

It’s still an LCD TV

Most LCD-based TVs struggle to produce blacks that don’t look gray, because the liquid crystal modules – those “shutters” that can block light – aren’t perfect. Even when they’re totally closed, some light from the backlights seeps through. That’s why displaying a “black” screen on your TV looks slightly grey, but when you turn it off, it goes pitch black. That grey you see is a minimal amount of light seeping through.

Quantum dots aim to improve performance in some of these areas, but at the end of the day, an LCD panel has its limitations – it will never be able to completely shut out all of the light behind it. For that reason, picture quality will always be compromised relative to OLED technology, which has pixels that can stop producing light completely when given the right signal, producing inky, pitch-black image quality.

Still, with plasma televisions now retired and OLED televisions (LG is the only company making them) still prohibitively expensive for most, it’s nice to know that LCD televisions will be getting a helping hand from quantum dots.

Caleb Denison
Digital Trends Editor at Large Caleb Denison is a sought-after writer, speaker, and television correspondent with unmatched…
5 TV deals you can’t afford to miss this 4th of July
The Samsung Q70A 4K TV on a media console in a modern loft-style dwelling.

Fantastic 4th of July sales, rising temperatures and some other factors are sending us running indoors this Independence Day. We can’t help but think we’ll be spending a good deal of time inside this summer -- might as well do it in style. Kick your TV game into overdrive with one of these 5 deals on some of the best brands in the business — LG, Samsung, TCL -- that offer not only the cinematic picture quality, but some of the best gameplay, convenience, and access to content that anyone can find. If you act now, you can get them for discounts up to $600. With the holiday quickly approaching, you can’t afford to miss out on these five TV deals.
50-inch Samsung 7 Series 4K TV -- $330, was $350

The 50-inch screen size is perfect for most livingroom and apartment setups and Samsung is giving you serious bang for your buck. The 7 Series comes enabled for a perfect picture, courtesy of the Crystal Processor 4K. Additionally, you can watch eye-opening 4K movies and TV shows at 4 times the resolution of Full HD, bringing all your current favorites to Ultra HD-level picture quality. Add to this the Motion Rate 120 technology and you can pretty much guarantee fast gaming, or sports action, without ever a stutter step or break in the action (literal missteps and fumbles, those are on you). It’s set up to navigate all your favorite apps and streaming content, has a super-clean look (thanks to its ultra-thin bezel), and even comes designed to help you hide unsightly cords and cables. This is an all-around fantastic TV with amazing picture quality. And if you act now, you’ll get a 30-day free HBO Max trial. Get it at Best Buy for only $330.

Read more
Gaming monitor vs. TV: Why a TV could be your next gaming monitor
LG GX OLED Hero

We said it at CES, but now that we've started testing new 2020 TVs, it bears repeating: Your next gaming monitor should probably be a newer 4K HDR TV. This is certainly true for console gamers and I would argue for most PC gamers as well. The console versus PC argument will no doubt rage on, but when it comes to developments in display technology, it's time to rethink what you consider a monitor.

Due to certain advances in TV technology over the past few years (and especially a few we're going to see later this year), I feel compelled to suggest that you seriously consider one of a handful of TVs for your new gaming monitor.
The gaming monitor's legacy
Alienware gaming setup Image used with permission by copyright holder

Read more
Sansui builds on its OLED TV line with new sizes, and adds new AI gaming monitor
The Sansui AI gaming monitor with a CES Innovation Award badge.

Sansui made a surprise entry back into the U.S. market last fall with the release of its 55-inch OLED -- the least expensive OLED on the market. At hundreds less than competitors from LG, Samsung, and Sony, the company made waves when it came out. We had a sample in our test lab for an unboxing and were impressed with what we saw. Now at CES, the company is expanding the line to three sizes -- 55-, 65-, and 77-inch models.

There's an enhanced karaoke mode for family nights that adds some gamification with performance scoring for pitch, rhythm, and style accuracy. It will also keep track of rankings with a family leaderboard, and can track individual progress as your karaoke skills improve. All sizes will have Dolby Vision and Atmos support, 120Hz refresh rate, variable refresh rate (VRR), and auto low latency mode (ALLM).

Read more