Skip to main content

What is an LTPO display? Is it different from regular OLED?

The LTPO display tech has gained popularity in recent years. LTPO or low-temperature polycrystalline oxide is a type of backplane tech used in OLED displays that allows your screen to operate at variable refresh rates, while using less battery than a standard OLED display. However, this technology is currently limited to flagship devices, and it’s likely to be a while before we see this technology trickle down to more affordable devices. At the moment, you can only find LTPO displays on devices like the Apple iPhone 13 Pro, Samsung Galaxy S22 Ultra, Google Pixel 6 Pro, Apple Watch Series 7, and a few others.

Keep reading to find out how this display tech works, what makes it different from standard OLED panels, and everything else you need to know about LTPO displays.

Recommended Videos

What is an LTPO display and how does it work?

An LTPO display can dynamically switch between refresh rates, without an additional hardware component between the graphics controller and the graphics processing unit (GPU). This saves a considerable amount of battery life as your phone doesn’t have to render as many frames for the task being performed. For instance, while looking at a static image, the refresh rate can be dropped down low, reducing power needs and processor load. Conversely, it can be cranked up to the maximum when playing a game, when the extra frames would be useful.

In comparison, other displays, like LTPS (low-temperature polycrystalline silicon) displays, do not allow for dynamic refresh rates unless an extra component is installed. This is the reason a number of phones only switch between 90Hz and 120Hz, or 60Hz and 120Hz refresh rates. But with LTPO tech, phone displays are capable of a refresh rate as low as 1Hz and anything in between.

Playing Asphalt 9 on the Galaxy S22 Ultra.
S22 Ultra with an LTPO display Andy Boxall/Digital Trends

To fully understand what an LTPO display is, we must first know what an OLED display is made of. It has three major layers: An organic emissive layer, a protective glass surface, and a backplane. The backplane controls how each pixel acts. It is composed of thin film transistors (TFTs), mostly of two kinds — one for switching on a pixel (switching TFTs) and another for maintaining its brightness (driving TFTs).

We’ve seen three types of TFT backplanes in the past few years: Amorphous silicon (a-Si), low-temperature polycrystalline silicon (LTPS), and indium gallium zinc oxide (IGZO). An LTPO display is made by combining the capabilities of the LTPS and IGZO backplanes. The LTPS backplane brings energy efficiency, while the IGZO backplane provides the variable refresh rate.

Is it different from regular OLED?

LTPO is a tweaked version of OLED, but it is still classed differently from a regular OLED panel. As indicated before, an OLED display has an LTPS backplane, while an LTPO OLED panel uses a combination of LTPS and IGZO backplanes.

A normal OLED display needs an additional component to switch between multiple refresh rates, but that’s not the case with an LTPO OLED panel. The LTPO displays on phones these days can refresh in a range of 1-120Hz or more, without taking a major hit on battery life. That’s the reason a lot of manufacturers are switching to LTPO panels on their flagship phones.

Benefits of LTPO displays

The display is one of the most power-hungry components on a smartphone, and with high refresh features included, it becomes the biggest enemy of the battery. This is where LTPO tech comes into play. By dynamically switching between refresh rates an LTPO panel saves a considerable amount of battery.

OnePlus 9 Pro in a person's hand.
OnePlus 9 Pro with Always On display feature Andy Boxall/Digital Trends

A device with a normal OLED panel can manually jump between refresh rates — but that capability is limited and isn’t as effective as an LTPO display, which can go as low as 1Hz depending on the activity. Let’s take an example of always on display, which, for the most part, displays static content and barely requires a refresh rate of more than 10Hz. Here, your phone will benefit from an LTPO display, as it will not have to display the content at a higher refresh rate like 60, 90, or 120Hz. Instead, it could keep it at 1Hz, and save battery power.

This applies to other scenarios, where your phone might lower the refresh rate when not required, and bump it up when necessary. While an exact figure is not known, it is believed that LTPO panels are 10% to 20% more efficient than regular OLED panels.

Phones with LTPO displays

Apple was the first to introduce the tech on the Apple Watch Series 4. Samsung became the first smartphone maker to offer a phone with an OLED LTPO display. The company’s last Note series device, the Note 20 Ultra, was the first to feature an LTPO display. Since then we have seen multiple high-end phones adopt these new panels. Provided below is the list of a few phones equipped with an LTPO display.

  • Samsung Galaxy Note 20 Ultra
  • Apple iPhone 13 Pro Max
  • Samsung Galaxy Z Fold 3
  • Samsung Galaxy Z Flip 3
  • Google Pixel 6 Pro
  • Samsung Galaxy S21 Ultra
  • Oppo Find X3 Pro
  • Oppo Find X5 Pro
  • OnePlus 10 Pro
  • OnePlus 9 Pro
  • Realme GT 2 Pro
  • Xiaomi 12 Pro
Ayush Chourasia
Ayush works as an independent tech journalist. He has been writing since 2018 and has worked with publications like India…
5G vs. LTE: What’s the difference and why you should care
OnePlus Nord N300 5G speed test.

By now, you’ve almost certainly heard of 5G, the latest chapter in the evolution of wireless technology. Chances are you already have a smartphone and plan that supports 5G; if you don’t, you probably will after your next upgrade.

Although 5G has now effectively reached the mainstream, you may still wonder what the big deal is and how it will improve your life over the 4G/LTE technologies that have been the standard for the past decade. Is it worth upgrading to a 5G phone? Do you need a 5G plan, and if so, what level of 5G service should you choose from among the different flavors?

Read more
Google just announced 7 big Android updates. Here’s what’s new
Text editing in Google Messages.

If you have an Android phone or tablet or a Wear OS watch, you should sit up and pay attention. Google has just announced a bundle of new features it's rolling out soon, and from Google Messages updates to a better hotspot experience, there's a lot to dig into.

Earlier this year, Google was spotted testing a new edit feature for its RCS-powered Google Messages app. Well, it has finally made its way to the app with the latest Android feature drop.

Read more
What is NFC? How it works and what you can do with it
NFC settings on an Android phone.

Near field communication (herein referred to as NFC) is a smartphone and wearable technology that lives in the shadows. Silently operating around the clock, NFC is relied upon for several device functions, with wireless transaction systems like Apple Pay, Google Pay, and Samsung Pay being one of the biggest. But this cool tech can do far more than let you pay for a Twix with your iPhone. 

Here’s everything you need to know about NFC technology, and the many ways you can use the wireless protocol today.
What is NFC, and how does it work?
NFC, which is short for near-field communication, is a technology that allows devices like phones and smartwatches to exchange small bits of data with other devices and read NFC-equipped cards over relatively short distances. The technology behind NFC is very similar to radio-frequency identification (RFID) commonly used in the security cards and keychain fobs that you likely already use to get into your office or gym. In fact, NFC is an evolution of RFID that offers more advanced features and better security, but the two technologies still share a lot of things in common.

Read more