Skip to main content

Black holes all look like donuts, regardless of their size

The release of a remarkable image of the black hole at the center of our galaxy isn’t only an incredible scientific achievement — it also agrees precisely with predictions about what black holes are and how these strange objects are formed by the power of gravity.

The black hole, called Sagittarius A*, is a type called a supermassive black hole, which is found at the center of almost all galaxies. Ours is on the smaller end for such giants: At 4.3 million times the mass of the sun, it’s much smaller than other monsters like the one is Messier 87 which was imaged in 2019 and which is 6.5 billion times the mass of the sun.

The EHT Collaboration created a flurry of images of Sagittarius A*, using ray tracing, a technique that visualizes the properties of the black hole based on data collected with the radio telescope array and predictions made by Einstein's theory of general relativity. The images shown here were created by UArizona's Chi-kwan Chan.
The EHT Collaboration created a flurry of images of Sagittarius A*, using ray tracing, a technique that visualizes the properties of the black hole based on data collected with the radio telescope array and predictions made by Einstein’s theory of general relativity. The images shown here were created by UArizona’s Chi-kwan Chan. Ben Prather/EHT Theory Working Group/Chi-Kwan Chan

However, images of these two black holes look notably similar, both showing a distinctive donut shape. And that agrees precisely with physicists’ predictions, which said that black holes would appear the same no matter what size they are.

Recommended Videos

“The fact that the light appears like a ring, with the black shadow inside, tells you it’s purely gravity,” black hole researcher Dimitrios Psaltis of the University of Arizona explained in a statement. “It’s all predicted by Einstein’s theory of general relativity, the only theory in the cosmos that does not care about scale.”

Please enable Javascript to view this content

This scaling is unusual because most things that exist at different scales look very different — Psaltis gives the example of an ant and an elephant, which look very different because of, among other factors, the way their mass is supported. But black holes aren’t like that, it seems, as they are the same whether big or small. Messier 87 is 1,500 times more massive than Sagittarius A* and is vastly larger as well, as you can see in a comparison image from the European Southern Observatory. But the two look very similar.

Size comparison of the two black holes imaged by the Event Horizon Telescope (EHT) Collaboration: M87*, at the heart of the galaxy Messier 87, and Sagittarius A* (Sgr A*), at the centre of the Milky Way.
Size comparison of the two black holes imaged by the Event Horizon Telescope (EHT) Collaboration: M87*, at the heart of the galaxy Messier 87, and Sagittarius A* (Sgr A*), at the center of the Milky Way. EHT collaboration (acknowledgment: Lia Medeiros, xkcd)

That means that even very small black holes, if we were able to image them, would look like the images of Sagittarius A* and Messier 87. They would all show that similar donut shape.

“Wherever we look, we should see donuts, and they all should look more or less the same,” Psaltis said, “and the reason this is important — besides the fact that it confirms our prediction – is that nobody likes it. In physics, we tend to dislike a world where things don’t have an anchor point, a defined scale.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Scientists want your help to search for black holes
An illustration of a black hole.

Even though black holes swallow anything that comes near them -- even light -- they are still possible to locate by looking for signs of their effects. Black holes are extremely dense, so they have a lot of mass and a strong gravitational effect that can be observed from light-years away. But the universe is a big place, and researchers are hoping that the public can help them to identify more black holes in the name of scientific exploration.

A project called Black Hole Hunter invites members of the public to search through data collected by NASA's Transiting Exoplanet Survey Satellite (TESS) to look for signs of a black hole. Using a technique called gravitational microlensing, citizen scientists will look at how the brightness of light from various stars changes over time, looking for indications that a black hole could have passed in front of a star and bent the light coming from it. This should enable the project to identify black holes that would otherwise be invisible.

Read more
Record-breaking supermassive black hole is oldest even seen in X-rays
Astronomers found the most distant black hole ever detected in X-rays (in a galaxy dubbed UHZ1) using the Chandra and Webb telescopes. X-ray emission is a telltale signature of a growing supermassive black hole. This result may explain how some of the first supermassive black holes in the universe formed. This composite image shows the galaxy cluster Abell 2744 that UHZ1 is located behind, in X-rays from Chandra (purple) and infrared data from Webb (red, green, blue).

Astronomers recently discovered the most distant black hole ever observed in the X-ray wavelength, and it has some unusual properties that could help uncover the mysteries of how the largest black holes form.

Within the center of most galaxies lies a supermassive black hole, which is hundreds of thousands or even millions or billions of times the mass of our sun. These huge black holes are thought to be related to the way in which galaxies form, but this relationship isn't clear -- and how exactly supermassive black holes grow so massive is also an open question.

Read more
This peculiar galaxy has two supermassive black holes at its heart
The billion-year-old aftermath of a double spiral galaxy collision, at the heart of which is a pair of supermassive black holes.

As hard as it is to picture, with billions or even trillions of galaxies in the universe, entire galaxies can collide with each other. When that happens, one galaxy can be destroyed or the two can merge into one. But even in the case of galaxy mergers, the effects of the collision are often visible for billions of years afterward.

That's shown in a recent image taken by the Gemini South observatory, which shows the chaotic result of a merger between two spiral galaxies 1 billion years ago.

Read more