Skip to main content

Astronomers use new method to discover planet orbiting two stars

Astronomers using NASA’s Transiting Exoplanet Survey Satellite (TESS) telescope have used a new detection technique to discover an unusual planet that orbits two stars. The planet TIC 172900988b has two suns, making it a type of planet called a circumbinary, and it is the first of its kind to be detected using TESS observing just two transits.

Exoplanets, or planets outside our solar system, are usually too small and faint to be seen directly. But astronomers can infer their existence using a variety of techniques including transits. A transit is an event when an exoplanet passes between Earth and its host star, temporarily blocking out some of the star’s light. Astronomers look for these drops in light and use them to predict the presence of a planet.

Illustration of TIC 172900988b, a planet orbiting two stars.
Illustration of TIC 172900988b, a planet orbiting two stars. Dr. Pamela Gay / Planetary Science Institute

However, this is more difficult when a planet orbits two stars, as one of the researchers who discovered this planet, Planetary Science Institute Senior Scientist Nader Haghighipour, explained in a statement:

Recommended Videos

“Detecting circumbinary planets is much more complicated than detecting planets orbiting single stars,” Haghighiour said. “The most promising technique for detecting circumbinary planets is transit photometry, which measures drops in starlight caused by those planets whose orbits are oriented in space such that they periodically pass between their stars and the telescope. In this technique, the measurements of the decrease in the intensity of the light of a star is used to infer the existence of a planet.

“To determine the orbit of the planet, precisely, at least three transit events are required. This becomes complicated when a planet orbits a double-star system because transits will not happen with same interval over the same star. The planet may transit one star and then transit the other before transiting the first star again, and so on.”

A newly discovered planet was observed in the system TIC 172900988.
A newly discovered planet was observed in the system TIC 172900988. In TESS data, it passed in front of the primary star (right), and 5 days later (shown) passed in front of the second star (left). These stars are just over 30% larger than the Sun and differ very little in size. Dr. Pamela Gay / Planetary Science Institute

The problem is that detecting three transits can take a very long time — and TESS only looks at a given portion of the sky for 27 days, which is usually too little time to see three transits. But in the case of TIC 172900988b, a planet roughly the size of Jupiter, the team was able to detect it using just two transits — one transit of each of its host stars.

The authors are hopeful that this new technique means telescopes like TESS will be able to discover more circumbinary planets in the future.

The research is published in The Astronomical Journal.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble discovers over 1,000 new asteroids thanks to photobombing
This NASA/ESA Hubble Space Telescope image of the barred spiral galaxy UGC 12158 looks like someone took a white marking pen to it. In reality it is a combination of time exposures of a foreground asteroid moving through Hubble’s field of view, photobombing the observation of the galaxy. Several exposures of the galaxy were taken, which is evidenced by the dashed pattern.

The Hubble Space Telescope is most famous for taking images of far-off galaxies, but it is also useful for studying objects right here in our own solar system. Recently, researchers have gotten creative and found a way to use Hubble data to detect previously unknown asteroids that are mostly located in the main asteroid belt between Mars and Jupiter.

The researchers discovered an incredible 1,031 new asteroids, many of them small and difficult to detect with several hundred of them less than a kilometer in size. To identify the asteroids, the researchers combed through a total of 37,000 Hubble images taken over a 19-year time period, identifying the tell-tale trail of asteroids zipping past Hubble's camera.

Read more
See planets being born in new images from the Very Large Telescope
This composite image shows the MWC 758 planet-forming disc, located about 500 light-years away in the Taurus region, as seen with two different facilities. The yellow colour represents infrared observations obtained with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope (VLT). The blue regions on the other hand correspond to observations performed with the Atacama Large Millimeter/submillimeter Array (ALMA).

Astronomers have used the Very Large Telescope to peer into the disks of matter from which exoplanets form, looking at more than 80 young stars to see which may have planets forming around them. This is the largest study to date on these planet-forming disks, which are often found within the same huge clouds of dust and gas that stars form within.

A total of 86 young stars were studied in three regions known to host star formation: Taurus and Chamaeleon I, each located around 600 light-years away, and Orion, a famous stellar nursery located around 1,600 light-years away. The researchers took images of the disks around the stars, looking at their structures for clues about how different types of planets can form.

Read more
Three tiny new moons spotted orbiting Uranus and Neptune
Neptune

Our solar system has a few new entries with the recent discovery of three moons of Uranus and Neptune. These ice giant planets are so far away that it is difficult to detect small moons orbiting them, especially when one of the recently discovered moons is the faintest moon ever discovered by a ground-based telescope.

Unlike Jupiter and Saturn, which both have a plethora of moons, Uranus is known to host 28 moons and Neptune just 16. That includes Uranus's new diminutive moon, which is just 5 miles across. Like Uranus' other moons, it will be named after a character from a Shakespeare plays, but a new name has not yet been chosen, so for now it is S/2023 U1.

Read more