Skip to main content

Watch the European Space Agency test its Mars rover parachute

ExoMars parachute high-altitude drop test

Despite what you might imagine, the trickiest part of sending a rover to Mars isn’t the journey through space — it’s slowing down and landing once you arrive there. Mars’s thin atmosphere makes slowing using a parachute difficult, which is why Mars missions are typically equipped with very large and high-tech parachutes to help rovers touch down gently on the red planet.

Recommended Videos

The European Space Agency (ESA) and Roscosmos will be sending their ExoMars rover to Mars in 2022, and they recently performed a high-altitude test of the rover’s parachute. But there were problems during the test, with one of the two parachutes being damaged when the pilot chute detached. The team will be checking data and making adjustments in the hope of fixing the issue before the next test later this year.

The ExoMars parachute is deployed during high-altitude drop tests.
ExoMars parachute deployed during high-altitude drop tests. Vorticity

ESA performed two tests of the system over June 24 and 25, taking the parachute to an altitude of 29 km (18 miles) using a helium balloon and dropping it along with a dummy descent module which simulates the size and weight of the rover as it will land. The parachute has two stages: A 15-meter-wide first stage which opens while the vehicle is still traveling at supersonic speeds, and a 35-meter-wide second stage, which slows the vehicle further.

Please enable Javascript to view this content

“We’re very happy to report that the first main parachute performed perfectly: We have a supersonic parachute design that can fly to Mars,” said Thierry Blancquaert, ExoMars program team leader.

Regarding the issue with the second parachute, Blancquaert went on to say, “The performance of the second main parachute was not perfect but much improved, thanks to the adjustments made to the bag and canopy. After a smooth extraction from the bag, we experienced an unexpected detachment of the pilot chute during final inflation. This likely means that the main parachute canopy suffered extra pressure in certain parts. This created a tear that was contained by a Kevlar reinforcement ring. Despite that, it fulfilled its expected deceleration and the descent module was recovered in good state.”

The team hopes to have this issue resolved ready for the next testing phase, which is scheduled to take place in October or November this year in Oregon.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Watch SpaceX fire up Starship engines ahead of fifth test flight
SpaceX's Starship engines during a ground-based test.

SpaceX has just performed a static fire of the six engines on its Starship spacecraft as it awaits permission from the Federal Aviation Administration (FAA) for the fifth test flight of the world’s most powerful rocket.

The Elon Musk-led spaceflight company shared footage and an image of the test fire on X (formerly Twitter) on Thursday. It shows the engines firing up while the vehicle remains on the ground.

Read more
Watch Blue Origin’s cinematic ad for its thrilling space tourism ride
blue origin ad space tourism ride

Reserve Your Seat on New Shepard

Blue Origin has shared a cinematic video showcasing its thrilling space tourism ride on the New Shepard rocket.

Read more
Mars has ‘oceans’ worth’ of water – but it’s deep underground
More than 3 billion years ago, Mars was warm, wet, and had an atmosphere that could have supported life. This artist's rendering shows what the planet may have looked like with global oceans based on today's topography.

One of the key issues for getting humans to Mars is finding a way to get them water. Scientists know that millions of years ago, Mars was covered in oceans, but the planet lost its water over time and now has virtually no liquid water on its surface. Now, though, researchers have identified what they believe could be oceans' worth of water on Mars. There's just one snag: it's deep underground.

The research used data from NASA's now-retired InSight lander, which used a seismometer and other instruments to investigate the planet's interior. They found evidence of what appears to be a large underground reservoir of water, enough to cover the entire planet in about a mile of ocean. But it's inaccessible, being located between 7 to 13 miles beneath the planet's surface. The water is located in between cracks in a portion of the interior called the mid-crust, which sits beneath the dry upper crust that is drillable from the surface.

Read more