Skip to main content

Genetic engineers are working on making an invisible man. Seriously

Hot off the heels of Blumhouse Productions’ The Invisible Man movie, scientists at the University of California, Irvine have published a paper describing work that could make such a thing possible in real life. Maybe. And it’s all thanks to a helpful assist from a very specific squid protein.

Recommended Videos

The project involves genetically engineering human cells to have the ability to vary their transparency. This is based on a characteristic found in cephalopods, the family of marine animals to which the squid belongs, that are able to change both the color and transparency of their skin. For example, certain female squid scare off aggressive males by changing the color of transparent tissue on their body to mimic the size, color, and position of testes found on male squid.

Please enable Javascript to view this content

What the researchers did in this latest piece of work was to take embryonic human kidney cells and grow them in a dish using a special technique to create the same protein found in color and transparency-shifting squid.

“We genetically engineered human cells to produce a squid protein called reflectin,” Alon Gorodetsky, a researcher in chemical engineering and material science at UC Irvine, told Digital Trends. “The protein formed particles within the cells, which we visualized with various types of microscopy. The particles’ presence changed the optical properties — [the] refractive index — of the cells and thus altered the way they scattered light. We then showed that we could tune the cells’ scattering of light with a chemical stimulus, salt, effectively changing their transparency.”

This is an early step toward developing cells that could be reversibly and tunably changed to alter their transparency levels. “We [now] need to develop improved strategies for controlling both the assembly of the protein-based particles without our cells and for tuning their optical properties in real time,” Gorodetsky explained. “A better understanding of the structure and self-assembly of reflectin proteins would be important for informing our efforts.”

As he noted, “there is a lot of work, and many steps, left before we can achieve genetically encoded invisibility.” But such a thing could be “possible very far down the line,” although it will require “numerous breakthroughs” to get there.

Considering that Invisible Man movies never seem to end up with the protagonist turning out to be a particularly swell guy, perhaps that’s ultimately a good thing.

The UC Irvine research was recently published in the journal Nature Communications.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Nissan has a cool idea to make remote working truly remote
nissan nv350 office pod concept

【NV350 CARAVAN】 OFFICE POD CONCEPT

Forget working from home. How about working from anywhere?

Read more
Edit, undo: Temporary gene editing could help solve the mosquito problem
malaria

Mosquitos aren’t just a pest that nibble on you when you’re trying to get to sleep in the summertime; they’re by far the deadliest animals on the planet. According to the World Health Organization, mosquito bites cause the death of one million people each year. The majority of these are the result of malaria, one of the many human-affecting diseases these tiny bloodsuckers can carry.

For this reason, scientists trying to tackle these diseases have explored a range of potential solutions -- such as gene drives, referring to tiny fragments of DNA that can be inserted into a mosquito’s chromosomes to deplete populations in various ways.

Read more
Don’t drop your diet yet, but scientists have discovered how CRISPR can burn fat
The ODIN DIY CRISPR kit

A personalized therapy for metabolic conditions that are linked to obesity could involve removing a small amount of a person’s fat, transforming it into an energy-burning variation using CRISPR gene-editing, and then re-implanting it into the body, according to researchers from the University of Massachusetts Medical School.

In tests involving mice, the implanted human fat cells helped lower sugar concentrations in the blood and decrease fat in the liver. When the mice were put on a high-fat diet, the ones that had been implanted with the human beige fat only gained half as much weight as those that had been implanted with regular human fat.

Read more