Skip to main content

These scientists have a wildly futuristic plan to harvest energy from black holes

Could black holes be harvested to provide power for future off-planet colonies? It sounds — and, in some ways, certainly is — pretty far-fetched. But, according to researchers from Columbia University and Chile’s Universidad Adolfo Ibáñez, it’s also possible. At least, theoretically.

Recommended Videos

“Imagine two parts of charged matter around a rotating black hole,” Felipe Asenjo, Professor of Physics at the Universidad Adolfo Ibáñez, told Digital Trends. “If they are in the right place, and they are pushed apart at a speed that is close to the speed of light, then one part will fall into the black hole, while the other one will gain energy escaping from it.”

Please enable Javascript to view this content

The idea, in essence, is to extract energy from black holes by gathering charged plasma particles as they try to escape from the event horizon, the threshold surrounding a black hole at which escape velocity is greater than the speed of light. To put it in even broader terms: The researchers believe that it would be possible to obtain energy directly from the curvature of spacetime. (And you thought that your new solar panels were exciting!)

“For natural practical uses, we can think that this process drives the very high-energy phenomena observed around black [holes],” Asenjo continued. “But for artificial practical uses, one can think the huge black hole [could be] a source of almost unlimited energy. If we recreate the separation of the two parts of charged matter, we are able to obtain [this] energy.”

So far, so theoretical

Luca Comisso, research scientist at Columbia University, noted that, so far, this is all very theoretical. “We worked out the math by using the theoretical frameworks of general relativity and plasma physics,” Comisso told Digital Trends. “Essentially, we figured out that the reconnection of magnetic field lines close to the event horizon of the black hole could extract black hole energy. Indeed, in these conditions, reconnection can produce negative energy particles, which extract energy from the black hole when they fall into the event horizon.”

To prove the robustness of this energy extraction system, the researchers next plan to carry out numerical simulations using supercomputers. Asenjo noted that the modeled system is so complex that it will require enormous computational capabilities to study it in a complete way. Fortunately, such technology exists.

What doesn’t yet exist are some of the other tools the hypothetical advanced civilization that might require this will hopefully one day develop. In other words, don’t expect this to be demonstrated for real any time soon. However, Comisso warned not to write it off as impossible.

“Of course this poses technological challenges, but as the history of humankind [teaches] us, what is impossible today might be possible tomorrow,” he said. “So I’m rather optimistic about that.”

A paper describing the work was published in the journal Nature Physics.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Record-breaking supermassive black hole is oldest even seen in X-rays
Astronomers found the most distant black hole ever detected in X-rays (in a galaxy dubbed UHZ1) using the Chandra and Webb telescopes. X-ray emission is a telltale signature of a growing supermassive black hole. This result may explain how some of the first supermassive black holes in the universe formed. This composite image shows the galaxy cluster Abell 2744 that UHZ1 is located behind, in X-rays from Chandra (purple) and infrared data from Webb (red, green, blue).

Astronomers recently discovered the most distant black hole ever observed in the X-ray wavelength, and it has some unusual properties that could help uncover the mysteries of how the largest black holes form.

Within the center of most galaxies lies a supermassive black hole, which is hundreds of thousands or even millions or billions of times the mass of our sun. These huge black holes are thought to be related to the way in which galaxies form, but this relationship isn't clear -- and how exactly supermassive black holes grow so massive is also an open question.

Read more
This peculiar galaxy has two supermassive black holes at its heart
The billion-year-old aftermath of a double spiral galaxy collision, at the heart of which is a pair of supermassive black holes.

As hard as it is to picture, with billions or even trillions of galaxies in the universe, entire galaxies can collide with each other. When that happens, one galaxy can be destroyed or the two can merge into one. But even in the case of galaxy mergers, the effects of the collision are often visible for billions of years afterward.

That's shown in a recent image taken by the Gemini South observatory, which shows the chaotic result of a merger between two spiral galaxies 1 billion years ago.

Read more
Swift Observatory spots a black hole snacking on a nearby star
Swift J0230 occurred over 500 million light-years away in a galaxy named 2MASX J02301709+2836050, captured here by the Pan-STARRS telescope in Hawaii.

Black holes can be hungry beasts, devouring anything that comes to close to them, including clouds of gas, rogue planets, and even stars. When stars get too close to a black hole, they can be pulled apart by gravity in a process called tidal disruption that breaks up the star into streams of gas. But a recent discovery shows a different phenomenon: a black hole that is "snacking" on a star. It's not totally destroying the star, but pulling off material and nibbling at it on a regular basis.

Black Hole Snack Attack

Read more