Skip to main content

Hubble captures an image of the stunning star-forming Prawn Nebula

When you look to the stars, you might expect to see a planet, a star, or even the International Space Station, but this week’s Hubble image shows something rather unexpected: A Prawn. The image shows the beautiful Prawn Nebula, located around 6,000 light-years away in the tail portion of the constellation Scorpius.

Despite the nebula’s large size, spanning over 250 light-years, it is rarely imaged as it is very dim, emitting only a small amount of light. The stars which can be seen appear to be a blue-white color, but in addition to this most of the stars within the nebula emit light in other portions of the spectrum that are invisible to the human eye. Hubble images in both the visible light wavelength and the infrared, allowing it to see more details of the beautiful swirls of dust and gas.

Hubble image of a small section of the Prawn Nebula in both visible and invisible infrared light, capturing dazzling detail of the nebula’s structure.
The Prawn Nebula is a massive stellar nursery located in the constellation Scorpius, about 6,000 light-years from Earth. Though the nebula stretches 250 light-years and covers a space four times the size of the full moon, it emits light primarily in wavelengths the human eye cannot detect, making it extremely faint to earthbound viewers. NASA, ESA, and J. Tan (Chalmers University of Technology); Processing; Gladys Kober (NASA/Catholic University of America)

“The Prawn Nebula, also known as IC 4628, is an emission nebula, which means its gas has been energized, or ionized, by the radiation of nearby stars,” Hubble scientists explain. “The radiation from these massive stars strips electrons from the nebula’s hydrogen atoms. As the energized electrons revert from their higher-energy state to a lower-energy state by recombining with hydrogen nuclei, they emit energy in the form of light, causing the nebula’s gas to glow. In this image, red indicates the presence of ionized iron (Fe II) emission.”

Recommended Videos

The nebula is a busy star-forming region, creating both individual stars and clusters of stars. In between these points of light are voids or cavities, which are created when hot stars give off stellar winds which blow away matter like dust and gas.

To show the nebula in its full context, the Hubble scientists also released this image of the full nebula, showing where this particular zoom-in image fits into the whole:

Star map showing location of the Prawn Nebula.
The Prawn Nebula lies south of the star Antares in the constellation Scorpius, the Scorpion. Hubble’s focused view captures just a small portion of the vast star-forming region. NASA, ESA, J. Tan (Chalmers University of Technology), and ESO; Processing; Gladys Kober (NASA/Catholic University of America)
Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb snaps a colorful image of a star in the process of forming
L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules.

L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. NASA, ESA, CSA, STScI

A stunning new image from the James Webb Space Telescope shows a young star called a protostar and the huge outflows of dust and gas that are thrown out as it consumes material from its surrounding cloud. This object has now been observed using two of Webb's instruments: a previous version that was taken in the near-infrared with Webb's NIRCam camera, and new data in the mid-infrared taken with Webb's MIRI instrument.

Read more
See a stunning 3D visualization of astronomy’s most beautiful object
This image is a mosaic of visible-light and infrared-light views of the same frame from the Pillars of Creation visualization. The three-dimensional model of the pillars created for the visualization sequence is alternately shown in the Hubble Space Telescope version (visible light) and the Webb Space Telescope version (infrared light).

This image is a mosaic of visible-light and infrared-light views of the same frame from the Pillars of Creation visualization. The three-dimensional model of the pillars created for the visualization sequence is alternately shown in the Hubble Space Telescope version (visible light) and the Webb Space Telescope version (infrared light). Greg Bacon (STScI), Ralf Crawford (STScI), Joseph DePasquale (STScI), Leah Hustak (STScI), Christian Nieves (STScI), Joseph Olmsted (STScI), Alyssa Pagan (STScI), Frank Summers (STScI), NASA's Universe of Learning

The Pillars of Creation are perhaps the most famous object in all of astronomy. Part of the Eagle Nebula, this vista was first captured by the Hubble Space Telescope in 1995, and has captivated the public ever since with its dramatic rising pillars of dust and gas that stretch several light-years high. The nebula has been imaged often since then, including again by Hubble in 2014 and more recently by the James Webb Space Telescope in 2022.

Read more
Hubble takes first image since switching to new pointing mode
This NASA Hubble Space Telescope features the galaxy NGC 1546.

This NASA Hubble Space Telescope captured an image of the galaxy NGC 1546. NASA, ESA, STScI, David Thilker (JHU)

The Hubble Space Telescope has been through some troubles of late, and the way that it operates had to be changed recently to compensate for some degraded hardware. The telescope's three gyros, which help it to switch between different targets in the sky, have been experiencing issues, with one in particular frequently failing over recent months. NASA made the decision recently to change the way that Hubble points, and it now uses just one gyro at a time instead of all three in order to preserve the two remaining gyros for as long as possible.

Read more