Skip to main content

James Webb researcher reveals how it will investigate the early universe

Once the James Webb Space Telescope begins science operations this summer, it will the world’s most powerful space telescope, and it will open new avenues for astronomy research. One of the researchers who will be working with James Webb, Massimo Stiavelli, the Webb Mission Office head at the Space Telescope Science Institute, has shared more information about how Webb will look back in time at some of the earliest stars and galaxies.

Because light takes time to travel, the further away from Earth we look, the earlier we are seeing in the development of the universe. Webb will be able to see more distant galaxies than ever before, allowing researchers to get a glimpse of the early stages of the universe. By looking at the composition of these very early stars and galaxies, researchers can get an idea of what was happening in the few minutes after the Big Bang.

Recommended Videos

“The chemical composition of the early universe, just after the big bang, is the product of the nuclear processes that took place in the first few minutes of the universe’s existence,” Stiavelli said, as shared in a NASA blog post. “These processes are known as ‘primordial nucleosynthesis.’ One of the predictions of this model is that the chemical composition of the early universe is largely hydrogen and helium. There were only traces of heavier elements, which formed later in stars. These predictions are compatible with observations, and are in fact one of the key pieces of evidence that support the hot big bang model.”

Webb will be searching out examples of these very old stars to see if they support current theories about the Big Bang. “The earliest stars formed out of material with this primordial composition,” Stiavelli said. “Finding these stars, commonly dubbed as the ‘First Stars’ or ‘Population III stars,’ is an important verification of our cosmological model, and it is within reach of the James Webb Space Telescope. Webb might not be able to detect individual stars from the beginning of the universe, but it can detect some of the first galaxies containing these stars.”

Stiavelli’s project is to look at one of the furthest galaxies discovered to date, called MACS1149-JD1, using Webb. The team will measure how much of the galaxy is made up of heavier elements, using an instrument called a spectrograph, so they can confirm whether it is made up of these very early stars. The project will be a part of Webb’s first year of science operations.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA reveals date for attempted return flight of troubled Starliner
Boeing's Starliner spacecraft docked at the space station.

NASA is targeting Friday, September 6, for the return flight of Boeing Space’s troubled Starliner spacecraft, the agency revealed on Thursday.

The vehicle will come home from the International Space Station (ISS) nearly three months later than originally planned and without the crew that it arrived with. The flight, the outcome of which could determine the Starliner’s future, is expected to take about six hours, NASA said in a blog post on Thursday.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more