Skip to main content

James Webb Space Telescope completes final testing ahead of launch

Finally, the big day approaches: The James Webb Space Telescope has completed its final tests and is now being prepared for its journey to its launch site. The next-generation telescope will be the successor to the venerable old Hubble Space Telescope, as well as taking over duties from the now-retired Spitzer Space Telescope.

The final round of testing includes a series of tests to ensure that the telescope will operate in space as planned. This is complex for several reasons — firstly, that the technology is cutting-edge and has to survive the extreme conditions of launch, and secondly, that the telescope needs to be folded up to fit into a rocket for launch and then unfurl itself once it is in orbit.

The James Webb telescope fully assembled and folded as it will be for launch.
Fully assembled and fully tested, the NASA/ESA/CSA James Webb Space Telescope has completed its primary testing regimen and is soon preparing for shipment to its launch site at Europe’s Spaceport in French Guiana. In this photo, Webb is folded as it will be for launch. NASA/Chris Gunn

With the tests complete and engineers confident that Webb is ready for launch, it will now be packed up and shipped to its launch site in Kourou, French Guiana.

Recommended Videos

“NASA’s James Webb Space Telescope has reached a major turning point on its path toward launch with the completion of final observatory integration and testing,” said Gregory L. Robinson, Webb’s program director in a statement. “We have a tremendously dedicated workforce who brought us to the finish line, and we are very excited to see that Webb is ready for launch and will soon be on that science journey.”

Please enable Javascript to view this content

With its more powerful hardware, Webb will be able to collect more data and do new science compared to the older Hubble. For example, it will be able to see whether a distant exoplanet has an atmosphere or not and even what that atmosphere is composed of — something which is very difficult to do with currently available telescopes. The bodies organizing the launch of Webb, NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA), have already laid out plans for what Webb will study in its first year.

For the team who have worked on Webb so far, the launch date, which is set for late November or early December this year, will be a major milestone both personally and professionally. “To me, launching Webb will be a significant life event – I’ll be elated of course when this is successful, but it will also be a time of deep personal introspection. Twenty years of my life will all come down to that moment,” said Mark Voyton, Webb observatory integration and test manager at NASA’s Goddard Space Flight Center.

“We’ve come a long way and worked through so much together to prepare our observatory for flight. The telescope’s journey is only just beginning, but for those of us on the ground who built it, our time will soon come to an end, and we will have our opportunity to rest, knowing we put everything on the line to make sure our observatory works. The bonds we formed with each other along the way will last far into the future.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Stunning view of the Sombrero Galaxy captured by James Webb
The NASA/ESA/CSA James Webb Space Telescope recently imaged the Sombrero galaxy with its MIRI (Mid-Infrared Instrument), resolving the clumpy nature of the dust along the galaxy’s outer ring. The mid-infrared light highlights the gas and dust that are part of star formation taking place among the Sombrero galaxy’s outer disk. The rings of the Sombrero galaxy produce less than one solar mass of stars per year, in comparison to the Milky Way’s roughly two solar masses a year. It’s not a particular hotbed of star formation. The Sombrero galaxy is around 30 million light-years from Earth in the constellation Virgo.

A new image from the James Webb Space Telescope shows a stunning and fashionable sight: the Sombrero Galaxy, named for its resemblance to the traditional Mexican hat. With its wide, flat shape reminiscent of the hat's wide brim, the galaxy, also known as Messier 104, has outer rings that are clearly visible for the first time.

The Sombrero Galaxy is located 30 million light-years away, in the constellation of Virgo, and it has been previously imaged by the Hubble Space Telescope. But while in the Hubble image, the galaxy appears as an opaque, pale disk, in the new Webb image you can see an outer blue disk, with a small bright core right at the center.

Read more
See SpaceX’s mighty Starship on the launchpad ahead of sixth test flight
spacex starship on pad sixth test flight gcnypiwa4aaqgll 75

As SpaceX gears up for the sixth test flight of its mighty Starship, the company has shared images of the rocket out on the launchpad at the Starbase facility in Boca Chica, Texas. The images capture the striking view of the almost 400-foot-tall rocket, with the 165-foot-tall upper stage mounted on top of the Super Heavy booster.

The test flight is scheduled for Monday, November 18, with the aim being to test new facilities such as burning one of the Raptor engines on the upper stage while in space to test future abilities to perform a deorbit burn. The company will also be hoping to once again catch the incoming booster for reuse using the giant "chopsticks" at its pad, as it previously did for the first time during the fifth test flight of the Starship in October.

Read more
Creepy cosmic eyes stare out from space in Webb and Hubble image
The gruesome palette of these galaxies is owed to a mix of mid-infrared light from the NASA/ESA/CSA James Webb Space Telescope, and visible and ultraviolet light from the NASA/ESA Hubble Space Telescope. The pair grazed one another millions of years ago. The smaller spiral on the left, catalogued as IC 2163, passed behind NGC 2207, the larger spiral galaxy at right. Both have increased star formation rates. Combined, they are estimated to form the equivalent of two dozen new stars that are the size of the Sun annually. Our Milky Way galaxy forms the equivalent of two or three new Sun-like stars per year. Both galaxies have hosted seven known supernovae, each of which may have cleared space in their arms, rearranging gas and dust that later cooled, and allowed many new stars to form. (Find these areas by looking for the bluest regions).

These sinister eyes gazing out from the depths of space star in a new Halloween-themed image, using data from both the Hubble Space Telescope and the James Webb Space Telescope. It shows a pair of galaxies, IC 2163 on the left and NGC 2207 on the right, which are creeping closer together and interacting to form a creepy-looking face.

The two galaxies aren't colliding directly into one another, as one is passing in front of the other, but they have passed close enough to light scrape by each other and leave indications. If you look closely at the galaxy on the left, you can see how its spiral arms have been pulled out into an elongated shape, likely because of its close pass to the gravity of the other nearby galaxy. The lines of bright red around the "eyes" are created by shock fronts, with material from each galaxy slamming together.

Read more