Skip to main content

How the James Webb Space Telescope will look for life around dead stars

Looking for life around dead stars

When NASA’s James Webb Space Telescope launches next year, it may be able to find indications of life beyond our planet in an unexpected location — on planets which orbit dead stars called white dwarfs.

Recommended Videos

A recent study found an intact planet orbiting around a white dwarf, which surprised astronomers as in their death throes these stars usually destroy the planets around them when they swell before collapsing to form the white dwarf. But this planet somehow survived, giving a clue to a new type of location where we could search for habitable planets.

Rendering of a planet transiting a white dwarf star.
Rendering of a planet transiting a white dwarf star. Jack Madden, Carl Sagan Institute, Cornell University

“If rocky planets exist around white dwarfs, we could spot signs of life on them in the next few years,” Lisa Kaltenegger, one of the authors of the new study and associate professor of astronomy in the College of Arts and Sciences and director of the Carl Sagan Institute, said in a statement.

Her co-author Ryan MacDonald, also at the Carl Sagan Institute, agreed that planets orbiting white dwarf are a prime target for searches for life: “We know now that giant planets can exist around white dwarfs, and evidence stretches back over 100 years showing rocky material polluting light from white dwarfs. There are certainly small rocks in white dwarf systems,” he said. “It’s a logical leap to imagine a rocky planet like the Earth orbiting a white dwarf.”

To actually discover if there are habitable planets around these dead stars, researchers will make use of new tools like NASA’s upcoming James Web Space Telescope. This instrument is so sensitive it will be able to detect whether distant planets have an atmosphere, which is a key requirement for habitability, and even whether that atmosphere contains gases that could indicate life.

Rendering of a white dwarf star on the horizon of a mountainous planet.
Rendering of a white dwarf star on the horizon of a mountainous planet. Jack Madden, Carl Sagan Institute, Cornell University

“When observing Earth-like planets orbiting white dwarfs, the James Webb Space Telescope can detect water and carbon dioxide within a matter of hours,” MacDonald said. “Two days of observing time with this powerful telescope would allow the discovery of biosignature gases, such as ozone and methane.”

The telescope is set to launch in 2021, when it will be able to begin its search for habitable worlds. The recently discovered planet orbiting a white dwarf, WD 1856 b, is a gas giant like Jupiter and therefore couldn’t host life, but finding it has opened the door to a new range of possibilities of where life could be located.

“What if the death of the star is not the end for life?” Kaltenegger said. “Could life go on, even once our sun has died? Signs of life on planets orbiting white dwarfs would not only show the incredible tenacity of life, but perhaps also a glimpse into our future.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb takes rare direct image of a nearby super-Jupiter
Artist’s impression of a cold gas giant orbiting a red dwarf. Only a point of light is visible on the JWST/MIRI images. Nevertheless, the initial analysis suggests the presence of a gaseous planet that may have properties similar to Jupiter.

Even with huge ground-based observatories and the latest technology in space-based telescopes, it's still relatively rare for astronomers to take an image of an exoplanet. Planets outside our solar system are so far away and so small and dim compared to the stars they orbit that it's extremely difficult to study them directly. That's why most observations of exoplanets are made by studying their host stars. Now, though, the James Webb Space Telescope has directly imaged a gas giant -- and it's one of the coldest exoplanets observed so far.

The planet, named Epsilon Indi Ab, is located 12 light-years away and has an estimated temperature of just 35 degrees Fahrenheit (2 degrees Celsius). The fact it is so cool compared to most exoplanets meant that Webb's sensitive instruments were needed to study it.

Read more
Webb captures a Penguin and an Egg for its two-year anniversary
This “penguin party” is loud! The distorted spiral galaxy at center, the Penguin, and the compact elliptical galaxy at left, the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow.

This “penguin party” is loud! The distorted spiral galaxy at center, called the Penguin, and the compact elliptical galaxy at left, called the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow. NASA, ESA, CSA, STScI

Today, July 12, marks two years since the first images from the James Webb Space Telescope were unveiled. In that time, Webb has discovered the most distant galaxies known, uncovered surprises about the early universe, peered into the atmospheres of distant planets, and produced a plethora of beautiful images of space.

Read more
James Webb snaps a colorful image of a star in the process of forming
L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules.

L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. NASA, ESA, CSA, STScI

A stunning new image from the James Webb Space Telescope shows a young star called a protostar and the huge outflows of dust and gas that are thrown out as it consumes material from its surrounding cloud. This object has now been observed using two of Webb's instruments: a previous version that was taken in the near-infrared with Webb's NIRCam camera, and new data in the mid-infrared taken with Webb's MIRI instrument.

Read more