Skip to main content

James Webb’s hexagonal image array shows its mirror’s shape

We won’t be seeing any stunning images of space from the James Webb Space Telescope just yet, as the telescope is still undergoing the months-long process of aligning its mirrors. However, there are still exciting updates to follow, and the latest step is a new image of the star HD 84406 shown 18 times in a hexagonal image array.

Webb’s first image was released last week, and in that image, you can see the 18 points of light which represent the same star imaged 18 times, due to the 18 hexagonal segments which make up the telescope’s primary mirror. As the segments are still being aligned, in that image they are dispersed across the image.

Dots of starlight arranged in a pattern similar to the honeycomb shape of the primary mirror, called an “image array.”
This early Webb alignment image, with dots of starlight arranged in a pattern similar to the honeycomb shape of the primary mirror, is called an “image array.” NASA/STScI/J. DePasquale

Now, in this new image, you can see the 18 points of light arranged into a hexagonal shape which represents the hexagonal shape of the mirror. This is due to the completion of the first stage of the mirror alignment, called the “Segment Image Identification.” This allows the arrangement of the points of light into an image array.

Recommended Videos

“We steer the segment dots into this array so that they have the same relative locations as the physical mirrors,” explained Matthew Lallo, systems scientist and Telescopes Branch manager at the Space Telescope Science Institute, in a statement. “During global alignment and Image Stacking, this familiar arrangement gives the wavefront team an intuitive and natural way of visualizing changes in the segment spots in the context of the entire primary mirror. We can now actually watch the primary mirror slowly form into its precise, intended shape!”

The next stage of the mirror alignment process is called Segment Alignment. In this phase, each segment of mirror will have its position adjusted to allow for larger positioning errors, and the secondary mirror — a circular mirror located on the end of a boom — will be adjusted as well. With this done, each point of light representing a star will become more focused. Then the team can move onto the step of Image Stacking, in which each of the 18 separate dots of light is brought on top of each other to create one point.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more
Event Horizon Telescope can now take images of black holes that are 50% sharper
Illustration of the highest-resolution detections ever made from the surface of Earth

The Event Horizon Telescope project, the group that took the first-ever image of a black hole, has made another historic breakthrough, making the highest-ever resolution observations of space taken from the Earth's surface. The project uses facilities around the globe to turn the Earth itself into a giant observatory, which is capable of taking highly precise measurements of distant galaxies.

The latest observations made use of the Atacama Large Millimeter/submillimeter Array (ALMA), a large array of radio telescopes located in Chile, as well as other facilities in Spain, France, and Hawaii. To get higher-resolution images than previous observations, scientists weren't able to make the telescope bigger -- as it was already the size of the Earth -- so they observed at a higher frequency instead.

Read more
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more