Skip to main content

James Webb Space Telescope turns on its high-gain antenna

The James Webb Space Telescope, now fully deployed and in its final orbit, continues to make progress as the team readies the telescope for science operations in a few months. This week, the telescope turned on its high-gain antenna, which enables to telescope to send data to Earth and receive commands via NASA’s Deep Space Network.

The diagram below shows the major components of James Webb, now everything is deployed and the observatory is in its final configuration. The antenna is on the underside of the telescope here, coming off the spacecraft bus which is the home for essential systems like power, altitude control, and communications.

Webb's major subsystems and components.
Webb’s major subsystems and components. NASA

As with other parts of the spacecraft, the antenna was extensively tested on Earth before it was ready to be used in space. The antenna was released in December last year, just one day after the launch of the spacecraft, as part of the gimbaled antenna assembly. According to NASA, the antenna will be under a lot of use as it will need to send at least 28.6GB of science data from Webb to Earth twice per day. The data will be sent through space and picked up by NASA’s Deep Space Network, which has three locations around the globe so that there is always at least one location that can maintain contact with Webb as the Earth spins.

Recommended Videos

In order to make the sending of data efficient, Webb will send data over a part of the electromagnetic spectrum called the Ka radio band. “The team also turned on the High-Gain Antenna, enabling downlink to Earth through the Deep Space Network using the Ka radio band,” NASA wrote this week. “The Ka-band provides a much higher data rate than the S-band that Webb has been using for communications up until now. The Ka-band and the High-Gain Antenna will eventually allow the observatory to send all of the science images and data down to the ground for astronomers around the world to analyze and make discoveries.”

Please enable Javascript to view this content

NASA has also shared that Webb’s first target will be the star HD 84406. This is a very bright star — in fact, it will be too bright for Webb to study once the telescope is focused — but that makes it ideal for collecting engineering data during the process of aligning Webb’s mirrors.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Space station video shows ‘cosmic fireflies’ high above Earth
Starlink satellites described as 'cosmic fireflies.'

On his fourth trip to orbit, NASA astronaut Don Pettit has been sharing some wonderful imagery captured from the International Space Station (ISS) since his arrival there in September.

His latest effort shows distant stars, city lights on Earth some 250 miles below, and what he describes as “cosmic fireflies,” but which are actually Starlink internet satellites deployed by Elon Musk’s SpaceX company.

Read more
Webb and Hubble snap the same object for two views of one galaxy
Featured in this NASA/ESA/CSA James Webb Space Telescope Picture of the Month is the spiral galaxy NGC 2090, located in the constellation Columba. This combination of data from Webb’s MIRI and NIRCam instruments shows the galaxy’s two winding spiral arms and the swirling gas and dust of its disc in magnificent and unique detail.

With all the excitement over the last few years for the shiny and new James Webb Space Telescope, it's easy to forget about the grand old master of the space telescopes, Hubble. But although Webb is a successor to Hubble in some ways, with newer technology and the ability to see the universe in even greater detail, it isn't a replacement. A pair of new images shows why: with the same galaxy captured by both Webb and Hubble, you can see the different details picked out by each telescope and why having both of them together is such a great boon for scientists.

The galaxy NGC 2090 was imaged by Webb, shown above, using its MIRI and NIRCam instruments. These instruments operate in the mid-infrared and near-infrared portions of the electromagnetic spectrum respectively, which is why the arms of this galaxy appear to be glowing red. These arms are made of swirling gas and dust, and within them are compounds called polycyclic aromatic hydrocarbons that glow brightly in the infrared. The blue color in the center of the galaxy shows a region of young stars burning hot and bright.

Read more
The space station just had to steer clear of more space junk
The International Space Station.

The International Space Station (ISS) had to steer clear of a piece of space junk on Monday -- the second such maneuver that the orbital outpost has had to make in a week.

“The ISS is orbiting slightly higher today after the docked Progress 89 cargo craft fired its engines for three-and-a-half minutes early Monday,” NASA said in a post on its website. “The debris avoidance maneuver positioned the orbital outpost farther away from a satellite fragment nearing the station’s flight path.”

Read more