Skip to main content

James Webb Space Telescope has gone cold, but that’s good

Almost four months after launch, the James Webb Space Telescope has just taken a big step toward making its first observations of deep space.

The $10 billion mission — a joint effort involving NASA, the European Space Agency, and the Canadian Space Agency — is on a quest to find out more about the origins of the universe while at the same time searching for distant planets that may support life.

Recommended Videos

This week the mission team at NASA’s Jet Propulsion Laboratory (JPL) confirmed that the Webb telescope had dropped to the required temperature to allow observation work to begin.

Please enable Javascript to view this content

A critical part of the telescope, the Mid-Infrared Instrument (MIRI), recently reached its final operating temperature below 7 kelvins (minus 447 degrees Fahrenheit, or minus 266 degrees Celsius).

JPL said that along with the telescope’s other other instruments, MIRI started cooling down in the shade of Webb’s large sunshield, dropping to around 90 kelvins (minus 298 F, or minus 183 C).

However, it said that dropping to less than 7 kelvins required an electrically powered “cryocooler” device to get it past the so-called “pinch point” when the instrument goes from 15 kelvins (minus 433 F, or minus 258 C) to 6.4 kelvins (minus 448 F, or minus 267 C).

“The MIRI cooler team has poured a lot of hard work into developing the procedure for the pinch point,” Analyn Schneider, project manager for MIRI, said on Wednesday. “The team was both excited and nervous going into the critical activity. In the end, it was a textbook execution of the procedure, and the cooler performance is even better than expected.”

The low temperature is vital as Webb’s instruments detect infrared light, which “distant galaxies, stars hidden in cocoons of dust, and planets outside our solar system” all emit.

Components on the Webb telescope, if too warm, would also emit infrared light, making it hard for scientists to understand the gathered data, so cooling them down solves this issue.

Cooling the telescope also suppresses something called “dark current,” an electric current created by the vibration of atoms in the Webb’s detectors that could also confuse the telescope as to where a light source is coming from.

“We spent years practicing for that moment, running through the commands and the checks that we did on MIRI,” said MIRI project scientist Mike Ressler. “It was kind of like a movie script: Everything we were supposed to do was written down and rehearsed. When the test data rolled in, I was ecstatic to see it looked exactly as expected and that we have a healthy instrument.”

The Webb team will now take test images of celestial objects in deep space to calibrate the telescope’s instruments and check that everything is working as it should. Assuming everything goes to plan, we should be seeing the first images from the project this summer.

The James Webb Telescope is the most powerful space-based observatory ever built and its work will complement that of the Hubble telescope that’s been exploring deep space for more than 30 years.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more